Чтение онлайн

на главную

Жанры

Шрифт:

Современные научные исследования показали, что в период гипобиоза экспериментальные животные без вреда для собственного здоровья переносят повышенные дозы ядов, радиоактивного облучения, а также не погибают и не болеют от искусственного заражения их микробами, вирусами и т. д. Это подчёркивает более высокий уровень защитно-приспособительных возможностей организма млекопитающих при таком варианте существования живой материи. В состоянии анабиоза живые существа (некоторые микробы, грибки) могут выживать даже в условиях вечной мерзлоты.

Таким образом, полноценное внутреннее питание в осложнённых (экстремальных) условиях жизни обеспечивает более надёжную защиту от различных внешних и внутренних вредных воздействий в плане сохранения вида живых организмов. Можно смело утверждать, что наряду с процессом размножения, циклическое переключение животных и низших живых существ на полноценный внутренний режим энергоснабжения и питания является важным фактором сохранения видов живой материи.

Третий вариант голодания присущ в большей степени млекопитающим, в том числе и человеку, которые не входят в гипобиоз. Возможно, в процессе эволюции они отошли от этого

принципа сохранения живой материи. Этот голод сопровождался полным воздержанием от приёма пищи внутрь в бодрствующем состоянии с определённым водным и двигательным режимом. При этом сроки физиологического голодания сокращены в сравнении с гипобиозом. У каждого животного они разные, У человека они редко превышают 40–45 дней голодания. Этот вариант голода, как и предыдущий, обеспечивает переключение организма на полноценный внутренний режим питания. Это и есть лечебное голодание, или иначе называемое РДТ, полноценное эндогенное питание. Внутреннее питание отличается от пищевого тем, что восстанавливает, а не разрушает работу иммуногенетического аппарата человека (млекопитающих) и низших живых существ. При восстановлении генетического аппарата все органы и системы человека так же восстанавливают свои функции. Поэтому лечебное голодание можно без преувеличения назвать оздоровительным питанием каждой физиологической клетки. В этот период клетки питаются настолько правильно и полноценно, что их внутриклеточный биосинтез продуцирует улучшенного качества нуклеиновые кислоты (основа генетического аппарата). А от качества синтеза нуклеиновых кислот зависит качество и других биологических структур всего организма. При этом ликвидируется напряжение в работе иммунной и ферментативной систем по уничтожению некачественных нестандартных для конкретного организма белковых соединений.

Таким образом, можно смело сделать вывод, что РДТ – полноценное эндогенное энергоснабжение выгодно отличается от пищевого тем, что является более качественным вариантом питания живой материи.

ВОПРОС: Каким образом происходит переключение организма человека на полноценное (восстановительное) эндогенное питание?

ОТВЕТ: Полноценное переключение на внутренний режим питания требует абсолютного исключения пищевого энергоснабжения (даже напитков, содержащих калории) и происходит за счёт сдвига кислотно-щелочного равновесия крови в организме в сторону кислой среды и развития компенсированного (саморегулируемого) ацидоза (подобного дыхательному ацидозу). Академик М. Ф. Гулый его ученики, а также зарубежные учёные отмечают, что при изменении кислотно-щелочного равновесия в сторону кислой среды ускоряются процессы усвоения (фиксации) клетками углекислого газа. Иными словами, по законам химии кислая среда плазмы крови легче отдаёт, а клетки крови и клетки кровеносных сосудов более активно в этот период фиксируют растворимый в крови CO2.

Работами профессора М. И. Волского и его последователей установлено, что усвоение клетками азота воздуха также ускоряется при изменении кислотно-щелочного равновесия крови в сторону кислой среды. Таким образом, азот наряду с углеродом, более активно насыщая клетку, способствует улучшению биосинтеза в ней белковых и других соединений. Доказано, что углерод CO2 в клетке преобразуется в углерод органических веществ (Эванс, Кребс и др.). Иначе говоря, при повышенном усвоении клетками CO2 срабатывает система по принципу фотосинтеза (самая идеальная биосинтетическая система в природе), и в сочетании с повышенным потреблением азота из воздуха создаются наиболее благоприятные условия для качественного построения нуклеиновых кислот, белков и других биологически активных веществ, необходимых для полноценной жизнедеятельности человека (млекопитающего).

В 1935 году Вуд и Веркман доказали, что птицы и млекопитающие способны «фотосинтезировать», т. е. усваивать CO2 из воздуха. Но эта способность млекопитающих в обычном режиме пищевого питания ничтожна в сравнении с «зелёным» миром или живыми существами, У которых в клетках нет ядра (прокариотами). В период зарождения и развития живой материи в атмосфере нашей планеты была значительно б'oльшая концентрация CO2. И живые структуры свободно фиксировали его, обеспечивая мощный синтез белковых и других органических соединений. Этот период можно назвать временем становления, развития и совершенствования живой природы на планете Земля.

Млекопитающие развивались уже в иных условиях, с меньшей концентрацией CO2 в атмосфере. В процессе эволюции уменьшилась способность их клеток усваивать CO2 и азот из воздуха. Но эти вещества поступают в организм с пищей. Процесс усвоения растворимого в крови углекислого газа клетками млекопитающих продолжает сохранять наиважнейшее значение в их жизнедеятельности и лежит в основе биосинтетических процессов каждой клетки, каждого органа и всех систем. Человек ничем не отличается в этом деле от других млекопитающих. Качественный и количественный синтез нуклеиновых кислот (из них состоит наследственный аппарат), а также аминокислот или других биологически активных веществ, структур организма человека прямо пропорционально зависит от процесса усвоения клетками растворимого в крови CO2. У молодых особей этот биосинтез более совершенен и, следовательно, качественнее, нежели у стареющих организмов. Наиболее совершенный биосинтез у человека-долгожителя, низкого качества – у лиц, рождённых с дефектным генетическим аппаратом, а также у больных-хроников, которые способны передавать по наследству дефектные гены.

У млекопитающих синтез белков и других структур живой материи не может осуществляться без процесса так называемого карбоксилирования, проще говоря, той же фиксации CO2. Чем выше уровень фиксации растворимого в крови углекислого газа клетками, тем полноценнее проходит карбоксилирование нуклеиновых кислот. Имеется и обратная связь. Чем качественнее работает наследственный генетический аппарат, тем лучше осуществляется усвоение не только растворённого в крови CO2, но и азота и углекислого газа из воздуха. В условиях развития ацидоза на голоде, то есть изменения кислотно-щелочного равновесия в сторону кислой среды, клетки млекопитающих начинают усиленно фиксировать CO2 и азот, приближаясь к уровню усвоения этих веществ клетками растений. Это и есть путь к полноценному эндогенному питанию.

При полном исключении на короткий период жизни человека (млекопитающего) пищевого энергоснабжения, то есть при изъятии пищи из питания, вначале происходит усиленное расщепление собственных жировых запасов организма на составные части. В первую очередь образуются ненасыщенные (жидкие) жирные кислоты. В их числе имеются так называемые высокомолекулярные ненасыщенные жирные кислоты, которые являются основой многих витаминов, гормонов и других биологически активных веществ. Поэтому клетки организма их незамедлительно используют в своих, необходимых для жизнедеятельности целях. Но конечными продуктами распада жира является ряд органических кислот, которые объединяются одним термином – кетоновые тела. Кроме того, как и при распаде любой ткани образуется углекислота, которая усваивается клетками в форме углекислого газа (CO2) или выделяется наружу через лёгкие. Эти конечные продукты распада жира, попадая в кровоток, изменяют его кислотно-щелочное равновесие в сторону кислой среды (ацидоза). Именно развивающийся ацидоз на голоде, подобно дыхательному ацидозу, улучшает процесс фиксации CO2 клетками или усиливает биосинтетический эффект.

Кетоновые тела при улучшении биосинтеза также более качественно усваиваются организмом, т. е. ресинтезируются в важные белковые и небелковые структуры. Однако в первые дни голодания накопление в крови кетоновых тел опережает их ресинтез. Неуклонное улучшение биосинтеза ещё не обеспечивает их достаточное усвоение организмом. Поэтому ацидоз постепенно нарастает. Наконец между пятыми-восьмыми сутками голодания наступает пик ацидоза, так называемый ацидотический криз. В этот момент усвоение клетками CO2 из крови и воздуха, а также ресинтез кетоновых тел достигает высшего уровня. Происходит качественный скачок в биосинтезе клеток человека. Он выражается в том, что накопление кетоновых тел в организме прекращается, даже несколько снижается в сравнении с их количеством в крови во время ацидотического криза. Именно в этот период биосинтез клеток человека подобен биосинтезу клеток растений, то есть клетка человека (млекопитающего) полностью разблокирована на усвоение CO2 и азота из воздуха. Это и определяет фактор полноценного внутреннего питания человека на голоде. В последующие дни после ацидотического пика кислая среда организма сохраняется приблизительно на одном уровне, незначительно колеблясь. Между семнадцатым и двадцать третьим днями голодания отмечается второй ацидотический криз, который не достигает уровня первого ацидотического пика. Какие дополнительные механизмы включаются в этот момент в организме человека, пока ещё не ясно. Затем до конца физиологического голода (40–45 дней) ацидоз сохраняется на одинаковом уровне. Это и есть регулируемый самим организмом (саморегулируемый) ацидоз, который обеспечивает совершенное питание клеток, а значит и в целом питание, энергоснабжение человеческого организма. Характерно, что после первого ацидотического пика больные начинают терять в весе значительно меньше. Если при умеренном двигательном режиме человек в первые дни теряет по килограмму веса, то после ацидотического пика – 50–150 г. Это объясняется биосинтезом, который обеспечивает эффект плюс калории. Для того, чтобы потеря жира была более весомой, обязательным условием для лиц с повышенным весом является интенсификация двигательного режима. Некоторые больные, чтобы потерять тот же килограмм в течение дня, после ацидотического пика увеличивали двигательный режим до 30–35 км в день. У больных с примерно нормальным или пониженным исходным весом двигательный режим сохраняется в умеренном количестве до 10–15 км в день. После ацидотического криза жировая ткань расходуется у них наиболее экономно и качественно. Этот качественно иной для человека принцип питания, энергоснабжения и даёт уникальный лечебно-профилактический эффект. При этом исчезают понятия: незаменимые аминокислоты, дефицит пищевых витаминов, белков и т. д. Саморегулирующая система живого организма в это время достигает своей вершины действия.

Жировая ткань – основное сырьё для энергоснабжения физиологических клеток и усиления их барьерных функций. Клетки, которые являются наиболее слабыми в энергетическом отношении, на голоде больше других включают в себя жировые соединения. После окончания разгрузочно-диетической терапии жир в течение первых 24–48 часов пищевого питания вновь выбрасывается этими клетками в кровоток, к примеру, обкладочными клетками желудка. Поэтому в первые дни возобновления пищевого питания из рациона рекомендуется исключение жиров. Дополнительным сырьём для ресинтеза на голоде могут быть так называемые балласт–белки, патологические клетки и очаги инфекции, которые образуются в процессе жизнедеятельности человека. Утилизация этих веществ, клеток, ненужных для жизнедеятельности организма, а также удаление из него вредных соединений через кожу, кишечник, лёгкие – один из важных элементов очистки и «расшлакирования» больного организма. К примеру, у злостных курильщиков с большим стажем во время лечебного голодания возникает отвращение к курению в связи с тем, что он сам и окружающие его люди с хорошим обонянием начинают улавливать специфический зловонный запах, выделяемый через его собственные верхние дыхательные пути. У отдельных курильщиков за счёт неприятных выделений вызывается позыв на рвоту на 10–12 день РДТ в присутствии курящих людей.

Поделиться:
Популярные книги

Приручитель женщин-монстров. Том 7

Дорничев Дмитрий
7. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 7

Книга пяти колец

Зайцев Константин
1. Книга пяти колец
Фантастика:
фэнтези
6.00
рейтинг книги
Книга пяти колец

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Энфис 3

Кронос Александр
3. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 3

Утопающий во лжи 3

Жуковский Лев
3. Утопающий во лжи
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Утопающий во лжи 3

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6