Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева
Шрифт:
Несколькими годами ранее этот американец, Эрнест Лоуренс (охарактеризовавший заявление Берга и Ноддаков об открытии сорок третьего элемента как «бредовое»), изобрел специальный прибор, предназначенный для сталкивания атомов на больших скоростях. Этот аппарат назывался циклотроном и предназначался для получения значительных объемов радиоактивных элементов. Лоуренса больше интересовал синтез изотопов имеющихся элементов, а не новых металлов. Но Сегре, посетивший лабораторию Лоуренса в 1937 году во время научной командировки в Америке, узнал, что в циклотроне используются молибденовые детали, постепенно приходящие в негодность. От такого известия внутренний счетчик Гейгера, сидевший где-то в душе у Сегре, застучал, как бешеный. Он скромно поинтересовался у Лоуренса, не мог бы тот отдать для работы использованные молибденовые компоненты. Через несколько недель Лоуренс, откликнувшийся на просьбу Сегре, с готовностью выслал несколько молибденовых полосок в Италию, воспользовавшись для этого обычной почтой. Интуиция не подвела Сегре: в полученных полосках они с Перрье нашли следы сорок третьего элемента. Так самый неуловимый
Разумеется, немецкие химики не отказались от своих претензий на открытие «мазурия». Вальтер Ноддак даже наведался к Сегре в Италию и крупно с ним повздорил. Более того, он явился к коллеге в устрашающей камуфляжной форме, покрытой свастиками. Разумеется, никакого разговора со взвинченным взрывным Сегре у него не получилось, тем более что Эмилио испытывал в связи с новым элементом и политическое давление. Функционеры Университета Палермо, где работал Сегре, склоняли его назвать открытый элемент «панормием» в честь латинского наименования Палермо. Вероятно, Сегре и Перрье колебались, памятуя о националистической истерии вокруг «мазурия», поэтому и окрестили сорок третий элемент технецием. В переводе с греческого это слово означает «искусственный». Название получилось очень точным, пусть и неброским – ведь технеций действительно был первым элементом, который удалось синтезировать вручную. Но такое название нисколько не прибавило популярности самому Сегре, и в 1938 году он взял творческий отпуск. Свой отпуск Сегре решил провести в Беркли, сотрудничая с Лоуренсом.
Нет никаких свидетельств того, что Лоуренс затаил злобу на Сегре за такой молибденовый гамбит, но именно Лоуренс в том же году согласился взять итальянца на работу за гроши. На самом деле, Лоуренс просто проигнорировал чувства Сегре и только съязвил, что те 184 доллара ежемесячной экономии он с удовольствием потратит на оборудование, например на свой драгоценный циклотрон. Увы, это лишний раз доказывает, что Лоуренс, отлично умевший привлекать средства и руководить исследованиями, совершенно бестолково строил отношения с людьми. Стоило Лоуренсу привлечь в команду одного блестящего ученого, как он тут же терял другого не менее ценного специалиста из-за своих диктаторских замашек. Даже Гленн Сиборг, горячий сторонник Лоуренса, однажды заметил, что именно в вызывавшей всеобщую зависть прославленной Радиационной лаборатории Лоуренса, а не в Европе должны были быть совершены два наиболее важных открытия того времени – искусственная радиоактивность и ядерный распад. Тот факт, что Лоуренс не сделал ни того, ни другого, был, по мнению Сиборга, неописуемым провалом.
Не исключено, что этот провал Лоуренса вызывал у Сегре сочувствие – ведь эти открытия могли быть совершены и в Италии, с участием Сегре. В 1934 году Сегре работал главным ассистентом в команде легендарного итальянского физика Энрико Ферми. Именно в тот год Ферми объявил всему миру (как оказалось – ошибочно), что в результате бомбардировки образцов урана нейтронами ему удалось открыть девяносто третий и другие трансурановые элементы. Ферми долго обладал репутацией самого «быстрого разума» в науке, но в данном случае поспешные выводы подвели его. На самом деле, он упустил гораздо более многозначительное открытие, чем синтез трансурановых элементов: Ферми за много лет до всех своих коллег смог запустить в уране реакцию ядерного распада, но даже не осознал этого. Когда в 1939 году два немецких физика оспорили результаты Ферми, вся итальянская лаборатория оцепенела – еще бы, ведь Ферми уже успел получить Нобелевскую премию за свое «открытие»! Особенно разочарован был Сегре. Он руководил группой, которая занималась анализом образцов и идентификацией новых элементов. Хуже того, Сегре сразу же вспомнил, что он (и не только он) еще в 1934 году читал статью о возможности ядерного распада, но отверг ее, как надуманную и необоснованную. По злой иронии судьбы, автором статьи была все та же злосчастная Ида Ноддак [70] .
70
Вообще, научная судьба Иды Ноддак выдалась очень противоречивой. Ида участвовала в открытии семьдесят пятого элемента, но, когда ее группа попыталась выделить сорок третий элемент, эта работа оказалась полна ошибок. Она первой предсказала возможность ядерного распада, опередив коллег на годы, но примерно в то же время принялась доказывать, что периодическая система превратилась в бесполезный реликт, так как многочисленные новые изотопы совершенно в нее не укладывались. Непонятно, почему Ноддак думала, что каждый изотоп является самостоятельным элементом, но она действительно так считала и активно призывала отказаться от периодической системы.
Позже Сегре стал известным историком науки (а также, между прочим, заядлым грибником). Он упомянул об ошибке с ядерным распадом в двух книгах, в обоих случаях лаконично выразив одну и ту же мысль: «Однако от нас ускользнула возможность деления, хотя Ида Ноддак специально обращала на нее наше внимание: она прислала нам статью, в которой недвусмысленно говорилось, что результаты можно интерпретировать как раскалывание тяжелого атома на две приблизительно равные части. Чем объяснить нашу слепоту, не вполне ясно» [71] .
71
Эта цитата Сегре о Ноддак взята из книги «Энрико Ферми – физик». В русском переводе книга вышла в издательстве «Мир» в 1973 году.
В качестве интересного исторического курьеза он также отметил, что ближе всего к открытию деления ядра подошли две женщины – Ида Ноддак и Ирен Жолио-Кюри, дочь Марии Кюри. Наконец, честь открытия деления ядер также принадлежит женщине, Лизе Мейтнер.
К сожалению, Сегре воспринял этот урок об отсутствии трансурановых элементов слишком буквально и вскоре сам оказался виновником настоящего «сольного скандала». Около 1940 года ученые предположили, что элементы, расположенные в периодической системе чуть дальше и чуть ближе урана, являются переходными металлами. В соответствии с их расчетами девяностый элемент относился к четвертому столбцу, а первый из элементов, не встречающихся в природе, – девяносто третий – оказывался в седьмом столбце, прямо под технецием. Но в сегодняшней таблице видно, что элементы, окружающие уран, отнюдь не являются переходными металлами. Они располагаются в самом низу таблицы прямо под редкоземельными элементами и в химических реакциях ведут себя именно как редкоземельные металлы, а не как технеций. Причина научной слепоты химиков вполне понятна. Несмотря на пиетет перед таблицей Менделеева, они не воспринимали периодический закон достаточно серьезно. Ученые полагали, что редкоземельные металлы представляют собой странное исключение и их причудливая химия нигде больше не проявляется. Но это не так: уран и другие элементы, расположенные рядом с ним, заполняют электронами f-оболочки, точно как редкоземельные металлы. Следовательно, эти элементы должны ответвляться от основной периодической системы на период ниже, чем редкоземельные металлы, и проявлять в химических реакциях примерно такие же свойства, как лантаноиды. Все просто, по крайней мере в ретроспективе. Через год после сенсационного открытия деления ядер один коллега Сегре, работавший с ним на одном этаже, вновь решил попробовать открыть девяносто третий элемент. Для этого он облучил немного урана в циклотроне. Считая (по описанным выше причинам), что этот элемент должен быть подобен технецию, он попросил Сегре о помощи. Действительно, ведь именно Сегре открыл технеций и разбирался в его химии лучше, чем кто-либо другой. Сегре был заядлым охотником за элементами и взялся за исследование образцов. Беря пример со своего наставника Ферми, умевшего мыслить очень быстро, Сегре заключил, что в результате деления получаются вещества, напоминающие редкоземельные элементы, но совсем не похожие на тяжелый аналог технеция. «Банальное деление ядер продолжается», – заявил Сегре и набросал статью с разочаровывающим названием «Безуспешный поиск трансурановых элементов».
Но тогда как Сегре решил просто работать дальше, тот самый коллега, Эдвин Макмиллан, заинтересовался его находкой. Все элементы при радиоактивном анализе ведут себя каким-то характерным образом, но «редкоземельные металлы» Сегре вели себя совершенно иначе, нежели другие редкоземельные элементы. Это был нонсенс. Поломав голову над этой проблемой, Макмиллан предположил, что, возможно, найденные элементы вели себя как редкоземельные металлы именно потому, что являются тяжелыми аналогами таких металлов и также располагаются в «ответвлении» от основной периодической системы. Поэтому Макмиллан с коллегой повторили облучение и химические анализы, уже без Сегре. Они практически сразу смогли открыть первый «запрещенный» в природе элемент – нептуний. Ирония судьбы слишком бросается в глаза, чтобы ее не заметить. Ведь, работая с Ферми, Сегре не догадался, что в результате деления ядер получаются трансурановые элементы. «Очевидно, не сделав никаких выводов из той ошибки, – вспоминал Гленн
Сиборг, – Сегре вновь не счел нужным внимательно провести химический анализ». Совершив практически противоположную ошибку, Сегре оказался слишком небрежен и не смог распознать в трансурановом нептунии продукт деления ядер.
Несомненно, как ученый Сегре был в ярости от собственной недальновидности. Но как историк науки он мог оценить последствия этого открытия. В 1951 году Макмиллан получил за свою работу Нобелевскую премию по химии. Но за открытие трансурановых элементов Шведская академия наградила Ферми; чтобы не признавать ошибку, Нобелевский комитет решил наградить Макмиллана лишь за «открытия в области химии трансурановых элементов» (курсив автора). Впрочем, поскольку Макмиллан открыл нептуний благодаря аккуратному и безошибочному химическому подходу, эту формулировку можно не считать неуважительной.
Конечно, Сегре оказался слишком самоуверенным, но его ошибки не идут ни в какое сравнение с промахами другого гения, который также работал в Калифорнии, но несколько южнее. Этим гением был Лайнус Полинг.
Получив в 1925 году степень доктора философии, Полинг согласился на полуторагодичную стажировку в Германии, которая была в те годы научным центром мира. Сегодня языком международного общения среди ученых является английский, но в начале прошлого века такую роль играл немецкий язык. Но благодаря тем знаниям по квантовой механике, которые Полинг смог приобрести в Европе, еще не достигнув тридцати лет, американская химия вскоре коренным образом превзошла немецкую. Сам же Полинг через много лет оказался на обложке журнала Time.
Достижение Полинга заключается в том, что ему удалось описать, как именно квантовая механика управляет химическими связями между атомами. Он проанализировал силу, длину, угол каждой химической связи. Полинга можно сравнить с Леонардо да Винчи, который впервые стал рисовать людей, верно подмечая мельчайшие анатомические детали. Поскольку химия, в сущности – это дисциплина, изучающая, как создаются и разрываются межатомные связи, Полинг практически в одиночку модернизировал целую область науки. Он абсолютно по праву заслужил один из величайших научных комплиментов, полученный от одного из коллег: «Полинг доказал, что химию можно понимать, а не только вызубривать» (курсив автора).