Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева
Шрифт:
После этого триумфа Полинг продолжал заниматься основами химии. Вскоре он определил, почему все снежинки шестиугольные: дело в том, что шестиугольную структуру имеют сами кристаллы льда. В то же время Полингу явно не терпелось вырваться за пределы простейшей физической химии. Например, в ходе одного из своих исследований он определил, почему серповидно-клеточная анемия смертельна для человека. Дело в том, что молекулы гемоглобина в эритроцитах больного имеют неправильную форму и не могут связываться с кислородом. Это исследование гемоглобина замечательно тем, что оно впервые позволило выявить в качестве причины заболевания аномальную молекулу [72] . Работа Полинга полностью перевернула представление врачей о медицине. Позже, в 1948 году, Полинг сильно заболел гриппом и, проводя целые дни в постели, пришел к мысли, которая помогла совершить революцию в молекулярной биологии. Он решил показать, как молекулы белков могут образовывать длинные цилиндры, которые называются альфа-спиралями. Функционирование белка в значительной степени определяется формой его молекул, и Полинг
72
Полинг (вместе с коллегами Харви Итано, С. Джонатаном Сингером и Айбертом Уэллсом) определил, что аномальный гемоглобин вызывает серповидноклеточную анемию. Для этого ученые пропустили здоровые и пораженные клетки через гель в электрическом поле. Клетки с нормальным гемоглобином отклонились в электрическом поле в одну сторону, а клетки с серповидным гемоглобином – в противоположную. Это означало, что разнотипные молекулы обладают противоположными электрическими зарядами. Такая разница могла возникнуть лишь на молекулярном уровне, между отдельными атомами.
Интересно отметить, что позже Френсис Крик упоминал, как сильно на него повлияла статья Полинга, в которой излагалась теория о молекулярной природе серповидноклеточной анемии. Это была та самая чистейшая молекулярная биология, которой так интересовался Крик.
Во всех этих случаях Полинга по-настоящему интересовало (кроме очевидной пользы для медицины) лишь то, как почти по волшебству у вещества возникают новые свойства, когда маленькие «глупые» атомы самостоятельно укладываются в большие структуры. Самая захватывающая сторона проблемы заключалась в том, что в молекулярной химии часть порой нисколько не напоминает целое. Например, вы никогда не догадались бы (если бы не увидели этого сами), что атомы углерода, кислорода и азота могут объединяться в аминокислоты. Аналогично, сложно себе представить, как аминокислоты сочленяются, образуя белки, а белки, в свою очередь, управляют жизнедеятельностью всех живых организмов. Эта работа, связанная с изучением атомных систем, была даже сложнее, чем синтез новых элементов. Но такой прыжок в невероятную сложность также повышал вероятность неверных интерпретаций и ошибок. В долгосрочной перспективе легкий успех Полинга с открытием альфа-спиралей оказался еще одной иронией судьбы: ведь если бы Полинг не запутался с другой спиральной молекулой, ДНК, то, несомненно, навечно остался бы в пятерке величайших ученых всех времен и народов.
Как и многие другие, Полинг практически не интересовался ДНК до 1952 года, хотя швейцарский биолог Фридрих Мишер обнаружил ДНК еще в 1869 году. Мишер совершил это открытие, поливая спиртом и желудочным соком свиней пропитанные гноем повязки (которые брал в расположенных неподалеку больницах). Ученый проделывал эти манипуляции до тех пор, пока на повязках не оставалась только клейкая тягучая сероватая субстанция. Исследовав это вещество, Мишер немедленно и самодовольно заявил, что дезоксирибонуклеиновая кислота окажется важнейшим биологическим веществом. К сожалению, химический анализ показал высокое содержание фосфора в этих образцах. В те времена единственным достойным изучения биохимическим соединением считались белки, а поскольку фосфор в белках отсутствует, ДНК сочли остатком, молекулярным довеском [73] .
73
Интересно, что в настоящее время биологи медленно возвращаются к исходному представлению о белках, общепринятому во времена Мишера. Оно сводится к тому, что именно белки – начало и конец всей генетической биологии. Ученые занимаются исследованиями генов в течение десятилетий, но до сих пор достигли сравнительно немногого. Но сегодня уже понятно, что одни лишь гены не могут объяснить удивительной сложности живых организмов, на самом деле, важных факторов гораздо больше. Исследование генома было важной и фундаментальной работой, но настоящий практический и коммерческий интерес представляет протеомика.
Это предубеждение удалось развенчать только в 1952 году, после того как был выполнен революционный эксперимент над вирусами. Вирусы нападают на клетки, прикрепляются к ним и впрыскивают в них свои гены. Но в начале 50-х никто еще не знал, где именно содержится эта генетическая информация – в белках или в ДНК. Поэтому два генетика использовали радиоактивные индикаторы, чтобы пометить и фосфор, содержащийся в ДНК вирусов, и серу, которая в большом количестве содержится в их белках. После того как исследователи проанализировали несколько зараженных клеток, они обнаружили, что радиоактивный фосфор был внедрен в клетки и передан при делении, а с серой этого не произошло. Белки не могли быть носителями генетической информации – таким носителем оказалась ДНК [74] .
74
Если быть точным, эксперименты с вирусами (их серой и фосфором), проводившиеся в 1952 году Альфредом Херши и Мартой Чейз, были не первым исследованием, подтвердившим, что ДНК несет в себе генетическую информацию. Впервые это удалось доказать на основе опытов с бактериями, выполненных Освальдом Эвери. Он опубликовал свои результаты в 1944 году. Хотя Эвери совершенно верно описал роль ДНК, в полученные им выводы поначалу мало кто поверил. Постепенное признание его правоты началось как раз к 1952 году, но только после экспериментов Херши – Чейз ДНК стала привлекать внимание таких крупных ученых, как Лайнус Полинг.
Именно Эвери, а также Розалинд
Но что же такое ДНК? Ученые на тот момент могли об этом только догадываться. Эта молекула состояла из длинных нитей, каждая из которых имела каркас, состоящий из фосфора и сахаров. В ней также находились нуклеиновые кислоты, которые выступали на этом каркасе, как позвонки на хребте. Но оставалось совершенно непонятно, какую форму эти нити принимают в живой клетке и как они связываются вместе. Как Полинг уже показал на примере гемоглобина и альфа-спиралей, функционирование молекулы в значительной мере зависит от ее формы. Вскоре форма ДНК стала важнейшим вопросом молекулярной биологии.
И Полинг, как и многие другие, счел, что лишь он сможет ответить на этот вопрос. Это было не высокомерие, по крайней мере, не только высокомерие: просто Полинга раньше никому не удавалось опередить. Итак, в 1952 году Полинг вооружился карандашом, логарифмической линейкой и фрагментарными данными, полученными из вторых рук, засел в своем калифорнийском кабинете и решил разгадать тайну ДНК. Сначала он ошибочно решил, что громоздкие нуклеиновые кислоты теснятся по внешнему краю каждого сахаро-фосфатного остова. Иначе он просто не мог себе представить, как такая молекула образует целостную структуру. Соответственно, он повернул сахаро-фосфатный остов в центр молекулы. На основании своих некачественных данных Полинг также решил, что ДНК представляет собой тройную спираль. Дело было в том, что Полинг оперировал информацией, полученной при исследовании высушенного препарата ДНК, которая закручивается иначе, чем влажная «живая» ДНК. Странная тройная спираль вынуждала бы молекулу скручиваться сильнее, чем на самом деле. Но на бумаге модель Полинга казалась вполне правдоподобной.
Сначала картинка складывалась отлично, но Полинг попросил одного аспиранта проверить его расчеты. Аспирант взялся за дело и вскоре принялся ломать голову, силясь понять, в чем же он ошибается, а Полинг – нет. В конце концов, пришлось сказать Полингу, что фосфатные компоненты, как ни крути, не вписываются в его модель по самой примитивной причине. На уроках химии нам всегда рассказывают о нейтральных атомах, но химики воспринимают элементы несколько иначе. В природе, особенно в биохимической среде, многие элементы существуют только в виде ионов, то есть заряженных атомов.
Действительно, если принять модель, предложенную Полингом, то получалось, что все атомы фосфора в ДНК всегда будут иметь отрицательный заряд и, соответственно, отталкиваться друг от друга. Невозможно было уложить в сердцевину ДНК три фосфатные нити, не разорвав всю молекулу на части.
Аспирант объяснил эту проблему, а Полинг (как и должен был поступить Полинг) вежливо проигнорировал эти возражения. Не совсем понятно, зачем Полинг вообще решил привлекать ученика для проверки, если не собирался его выслушать. Но причина, по которой ученый отмахнулся от аспиранта, вполне ясна. Разумеется, Полинг стремился к научному приоритету, хотел, чтобы все остальные идеи о ДНК считались развитием его идеи. Поэтому, изменив своей обычной дотошности, Полинг предположил, что структурные детали молекулы прояснятся сами собой, и уже в начале 1953 года поспешно опубликовал свои выводы о тройной спирали, построенной вокруг фосфатной сердцевины.
Тем временем по другую сторону Атлантики два застенчивых аспиранта из Кембриджского университета корпели над пробными экземплярами статьи Полинга. Сын Лайнуса Полинга, Питер, работал в той же лаборатории, что и Джеймс Уотсон и Френсис Крик [75] . Великодушно он предоставил копию отцовской статьи коллегам. Никому не известные исследователи давно бились над тайной ДНК, пытаясь сделать себе на этом имя. И то, что они прочитали в статье Полинга, невероятно их расстроило: они сами выстроили такую же модель годом ранее, но смущенно отказались от нее, когда одна коллега доказала им, что модель «тройной спирали» явно ошибочна.
75
Основные документы, касающиеся Полинга и его конкуренции с Уотсоном и Криком, можно найти на великолепном сайте Орегонского государственного университета, где собраны и выложены материалы сотен статей и писем Полинга, а также составлена документальная история, которая называется «Лайнус Полинг и гонка за ДНК».
См.dna/index.html.
Но эта дама, раскритиковавшая аспирантов (звали ее Розалинд Франклин), невзначай раскрыла им секрет. Франклин специализировалась на методе рентгеновской кристаллографии, который позволяет определять форму молекул. Ранее в том же году Франклин исследовала сырую ДНК из спермы кальмара и пришла к выводу, что ДНК – двунитевая молекула. Полинг в период обучения в Германии также занимался рентгеновской кристаллографией. Если бы он познакомился с данными, полученными Франклин, он, вероятно, сразу бы нашел верное решение. Ведь форму высушенной ДНК он также установил при помощи рентгеновской кристаллографии. Но Полинг был убежденным либералом и не стеснялся об этом высказываться. Поэтому маккартисты добились того, чтобы загранпаспорт Полинга надолго застрял в Госдепартаменте США, и в 1952 году он просто не мог съездить в Англию на важную конференцию, где мог бы услышать о работе Франклин. Кроме того, в отличие от Франклин, Уотсон и Крик никогда не делились своими открытиями с конкурентами. Но они перенесли нанесенную Франклин обиду и сами принялись разрабатывать ее идею. Вскоре после этого на глаза друзьям попалась та самая статья Полинга, в которой он повторил их же ошибку.