Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков
Шрифт:
— Увы! — безнадежно вздохнул Фило. — Для этого надо знать геометрию.
— Золотые слова, хоть и не новые. Нечто подобное сказал Платон еще в четвертом веке до нашей эры. На фронтоне его афинской академии было начертано: «Не знающий геометрии да не входит сюда!» И вот почему именно к Платону обратились за помощью делийцы, когда произошла история с удвоением куба.
— Вас не поймешь, — рассердился Фило. — То вы говорили, что удвоение куба — задача, теперь это уже история…
Но Мате попросил его не придираться к словам: удвоение куба, как и всякая задача, имеет свою историю.
В IV веке до нашей эры на острове Делос
Ознакомившись с задачей, Платон якобы сказал, что боги задали ее делийцам не потому, что им не нравится прежний жертвенник, а в укор и назидание грекам, которые мало думают о математике и пренебрегают геометрией.
— Стало быть, задача показалась ему очень трудной, — заключил Фило. — Но почему? Увеличьте ребро куба в два раза — вот вам и удвоение!
Мате сказал, что решение поистине царское, и Фило задрал было нос, но выяснилось, что таким образом пытался решить задачу об удвоении куба критский царь Минос. При этом объем получился у него не в два, а в восемь раз больше прежнего, ибо объем куба равен кубу его ребра, а два в кубе как будто восемь…
Фило, разумеется, сразу сник, но тут же сообразил, что длину ребра можно найти и другим способом. Допустим, объем прежнего куба равен единице. Тогда объем нового должен быть равен двум. Значит, извлеките корень кубический из двух, и дело в шляпе.
На сей раз Мате признал, что Фило рассуждает правильно, но вот беда: извлечь корень кубический из двух можно только приближенно. Ведь это число иррациональное, иначе говоря, несоизмеримое с единицей!
— Ничего, — не сдавался Фило, — можно небось подобрать и такую длину ребра, чтобы корень извлекался. Пусть, например, ребро куба равно двум. Тогда объем будет равен восьми, а удвоенный объем — шестнадцати. Извлечем корень кубический из шестнадцати…
— И снова получим иррациональное число. Ведь что такое шестнадцать? Это восемь умноженное на два. Из восьми корень кубический извлекается, а из двух — нет. А так как при удвоении множитель два под корнем неизбежен, значит, подобрать длину ребра, которая была бы числом рациональным, нельзя:
— Странно, странно и в третий раз странно. Выходит, удвоение куба вообще невозможно?
— Невозможно с помощью слепой линейки и циркуля. Но есть в геометрии и другие способы. Вместо того чтобы извлекать корень, который нельзя вычислить точно, можно найти длину ребра непосредственно на чертеже. Именно так и поступали древние греки. А так как работа эта достаточно кропотлива, Эратосфен решил упростить ее и придумал прибор, который находит длину ребра чисто механически.
— Платон, наверное, сказал бы, что Эратосфен сплутовал, — добродушно предположил Фило.
— Это вы хорошо заметили, — похвалил Мате. — Эратосфен тоже был убежден, что Платон бы его по головке не погладил.
— Откуда
— От самого Эратосфена. Он написал сочинение «Платоник», где немалое место занимает задача об удвоении куба. Способы решения ее обсуждают греческие математики Архит, Менехм, Эвдокс и, конечно, сам Платон. И когда заходит речь о применении механического прибора, Эратосфен, искусно подделываясь под стиль Платона, заставляет его высказать отрицательное отношение к подобному способу.
— Знаете, — неожиданно заявил Фило, — на месте Платона я бы рассуждал точно так же. По-моему, людям не следует избавлять себя от необходимости думать.
— Возможно, — кивнул Мате, — но у Платона были на этот счет и другие соображения, связанные с его мировоззрением. Как философ-идеалист, он презирал все материальное, преходящее, осязаемое. Грубое плотницкое приспособление принижало в его глазах науку, предметом которой, по его мнению, должно быть только отвлеченное, высокое, бесконечное. Кроме того (это уж моя собственная догадка!), всякий механический прибор неминуемо связан с движением. Вот и прибор Эратосфена основан на передвижении планок. А в те времена вводить движение в геометрию считалось дурным тоном. Так полагали и Платон, и ученик его Аристотель, а вслед за Аристотелем друг наш Хайям. Между прочим, доказательство пятого постулата, принадлежащее ал-Хайсаму, Хайям критиковал как раз за то, что в нем есть элемент движения…
— Хорошо, что вы вспомнили о Хайяме! — обрадовался Фило. — Любопытно бы узнать, как он умудрялся решать кубические уравнения с помощью конических сечений?
— Прекрасный вопрос! — воодушевился Мате. — Только что собирался рассказать вам о способе удвоения куба, придуманном Менехмом.
— В огороде бузина, а в Киеве дядька! При чем тут Менехм? Я же вас про Хайяма спрашиваю! Про Хайяма, который жил полтора тысячелетия спустя!
— Тем не менее между ними прямая связь. И сейчас вы это поймете, если только нальете мне еще стакан вашего несравненного чая.
СНОВА КОНИЧЕСКИЕ СЕЧЕНИЯ
— Так вот, — продолжал Мате, принимая из рук Фило заново наполненный стакан, — вы уже сами установили, что задача об удвоении куба сводится к вычислению корня кубического из двух. На языке современной алгебры, то есть пользуясь буквенными обозначениями, это можно записать так:
что вытекает из известного еще в Древнем Вавилоне уравнения x3 = 2. Менехм предложил записать это уравнение в виде двойной пропорции:
1/х = х/у = у/2.
— Не понимаю, — сказал Фило, — откуда взялся игрек?
Мате возвел очи к небу. О Господи! Он и забыл, что для Фило алгебраические преобразования — китайская грамота.
— Исключите из этих двух пропорций смущающий вас игрек, и вы снова получите x3 = 2, — объяснил он, доставая блокнот. — Смотрите. Из пропорции 1/х = х/у следует, что у = х2. Подставьте в равенство ху = 2 вместо игрека x2, и получится, что х3= 2. Теперь вы видите, что от преобразования, сделанного Менехмом, наше первоначальное уравнение ничуть не изменилось.