Искусственный интеллект – надежды и опасения
Шрифт:
Сосредоточившись на пороках тоталитаризма (политического, научного и религиозного), Винер воспринимал происходящее глубоко пессимистически. Его книга предрекала катастрофу, которая непременно произойдет, если мы не исправимся, причем как можно быстрее. Современный мир людей и машин более полувека спустя после публикации книги Винера гораздо сложнее и богаче и содержит намного больше политических, социальных и научных систем, чем он мог себе представить. Впрочем, предупреждения относительно того, что может случиться, если мы ошибемся, – например, если некий глобальный тоталитарный режим установит полный контроль над интернетом, – ничуть не утратили актуальности по сравнению с 1950 годом.
Наиболее известные математические работы Винера были посвящены проблемам анализа сигналов и воздействия шума. В
21
Американский нейролингвист и математик, вместе с У. Маккаллоком исследовал возможности «компьютеризации» нейронов.
Главная идея Винера заключалась в том, что мир следует понимать с точки зрения информации. Сложные системы, будь то живые организмы, мозг или человеческое общество, состоят из взаимосвязанных контуров обратной связи, где обмен сигналами между подсистемами порождает комплексное, но стабильное поведение. Когда целостность контура обратной связи нарушается, система утрачивает стабильность. Винер нарисовал убедительную картину функционирования сложной биологической системы – картину, в целом общепринятую сегодня.
Восприятие информации как центрального звена управления поведением сложных систем было замечательным открытием своего времени. Ныне, когда автомобили и холодильники битком набиты микропроцессорами, а большая часть человеческого общества в своей деятельности опирается на компьютеры и сотовые телефоны, подключенные к интернету, подчеркивать важнейшую роль информации, вычислений и связи кажется банальностью. Но в эпоху Винера первые цифровые компьютеры только-только появлялись, а об интернете никто даже не задумывался.
Замечательное прозрение Винера – что не только сложные инженерные системы, но какие угодно сложные системы опираются в работе на циклы сигналов и вычислений – обеспечило несомненный прорыв в области разработки комплексных систем, создаваемых человеком. Например, те методы, которые Винер и его соратники разрабатывали для управления ракетами, впоследствии получили применение при конструировании лунного корабля «Сатурн-V» [22] , одного из главных технических достижений XX столетия. А кибернетические выкладки Винера относительно человеческого мозга и компьютеризированного восприятия можно по праву посчитать «прародителями» современных систем глубинного обучения на основе нейронных сетей, а также искусственного интеллекта как такового. Однако текущее развитие ситуации в этих областях не совпадает с нарисованной им картиной, и не исключено, что в дальнейшем это скажется на человеческом использовании как человеческих существ, так и машин.
22
1 Американская сверхтяжелая ракета-носитель, использовалась для вывода в космос кораблей проекта «Аполлон» и космической станции «Скайлэб».
Именно применительно к людям кибернетические идеи Винера оказались ошибочными. Оставляя в стороне его достаточно дилетантские размышления о языке [23] , законодательстве и человеческом обществе, рассмотрим более скромную, но потенциально полезную инновацию, внедрение которой он считал неизбежным в 1950 году. Винер отмечал, что протезы станут намного эффективнее, если их владельцы обретут способность напрямую общаться с этими устройствами посредством нервных сигналов, получать информацию о давлении и местоположении от протезированных конечностей и направлять их последующие движения. Как выяснилось, на самом деле все куда сложнее, чем предполагал Винер: семьдесят лет спустя протезы с «нервической» обратной связью не продвинулись дальше грубых, по сути, прототипов. Сама концепция Винера превосходна, но дело в том, что крайне непросто сопрячь нейронные сигналы с механико-электрическими устройствами.
23
Вероятно, имеется в виду стремление Н. Винера обнаружить «язык» у животных и насекомых и приписывание человеку «врожденной» способности к шифрованию/дешифрованию сигналов.
Что еще важнее, Винер (как и практически всё поколение 1950-х) сильно недооценивал потенциал цифровых вычислений. Как уже отмечалось, в области математики Винер занимался анализом сигналов и шума, его аналитические методы применимы к постоянно меняющимся – аналоговым – сигналам. Да, он участвовал в разработке методов цифровых вычислений в годы войны, но не предвидел (и вряд ли мог предвидеть) экспоненциальный рост вычислительных мощностей в результате внедрения и устойчивой миниатюризации полупроводниковых схем. Не будем винить Винера: транзистор тогда еще не изобрели, электронные лампы в знакомых ему цифровых компьютерах не отличались надежностью, а сама технология их использования не масштабировалась для более крупных устройств. В дополнении к изданию «Кибернетики» 1948 года он предполагал появление шахматных компьютеров и предсказывал, что они смогут мыслить на два-три (всего) хода вперед. Наверняка он несказанно удивился бы, доведись ему узнать, что за полстолетия компьютер сумеет одолеть чемпиона мира по шахматам среди людей.
Когда Винер писал свои книги, рождался показательный пример переоценки технологических возможностей. В 1950-х годах предпринимались первые попытки разработать искусственный интеллект; речь о таких исследователях, как Герберт Саймон, Джон Маккарти и Марвин Минский, которые начали программировать компьютеры на выполнение простых задач и конструировать примитивных роботов. Успех первоначальных усилий побудил Саймона заявить, что «машины в ближайшие двадцать лет смогут выполнять любую работу, которую способен выполнить человек». Подобные прогнозы с треском провалились. Последовательно наращивая свою мощность, компьютеры все лучше и лучше играли в шахматы, поскольку могли систематически генерировать и оценивать широкий выбор потенциальных будущих ходов. Но большинство предсказаний в сфере ИИ, будь то горничные-роботы или что-то еще, оказались пустыми фантазиями. Когда суперкомпьютер DeepBlue победил Гарри Каспарова в шахматном матче 1997 года, наиболее «продвинутым» роботом-уборщиком считалась «Румба», которая беспорядочно металась по помещению с пылесосом и пищала, застревая под диваном.
Технологические прогнозы весьма проблематичны, учитывая, что технологии развиваются через усовершенствования, сталкиваются с препятствиями и форсируются инновациями. Многие препятствия и отдельные инновации выглядят ожидаемыми, но к большинству тех и других это не относится. В моей собственной области экспериментов по созданию квантовых компьютеров я обычно наблюдаю, как отдельные технологические этапы, казалось бы вполне реализуемые, оказываются невозможными, тогда как другие задачи, нерешаемые, как мне думается, легко осуществляются на практике. В общем, не узнаешь, пока не попробуешь.
В 1950-х годах Джон фон Нейман, отчасти вдохновляясь беседами с Винером, ввел понятие «технологической сингулярности». Технологии имеют тенденцию улучшаться в геометрической прогрессии, скажем удваивать мощность или чувствительность приборов за некоторый интервал времени. (Например, с 1950 года компьютеры удваивали мощность примерно каждые два года – это наблюдение известно как закон Мура.) Фон Нейман экстраполировал наблюдаемый экспоненциальный технический прогресс и допустил, что «технический прогресс станет непостижимо быстрым и сложным», опережая человеческие возможности в уже не слишком отдаленном будущем. Действительно, если отталкиваться исключительно от наращивания вычислительных мощностей, выраженных в битах и битовых переходах, и прогнозировать будущее на основании текущих темпов, мы вправе утверждать, что компьютеры сравняются по возможностям с человеческим мозгом в ближайшие два-три-четыре десятилетия (в зависимости от того, как оценивать сложность процессов обработки информации в человеческом мозге).