Искусственный интеллект. Большие данные. Преступность
Шрифт:
Здесь нельзя не согласиться с профессором факультета философии Оксфордского университета, основателем и директором Института будущего человечества Ником Бостромом, который пишет: «Нейрокомпьютерные интерфейсы вряд ли станут тем вариантом, который приведет нас к сверхразуму. Усовершенствование сетей и организаций может в долгосрочной перспективе привести к появлению слабых форм коллективного интеллекта, но более вероятно, что оно сыграет стимулирующую роль, как и биологическое улучшение интеллектуальных способностей, постепенно повышая эффективность умственной деятельности людей при решении интеллектуальных задач» [6] .
6
Востром,
За истекшие 60 лет сложилось три основных направления определения ИИ. Эти различные понимания – не отвлеченные рассуждения. На программы, построенные на каждом из них, потрачены миллиарды долларов.
Обычно, когда дело касается ИИ, все вспоминают знаменитый тест Тьюринга. С тестом связано первое направление определения ИИ. Суть теста в следующем: если при общении с компьютером посредством анонимного канала связи нельзя понять, с кем идет беседа – с человеком или машиной – то такой компьютер можно считать ИИ. Грубо говоря, ИИ – это интеллект, похожий на человеческий, по результатам действий, т. е. по поведению. Долгое время всех удовлетворяло такое понимание ИИ. Собственно, знаменитый Watson – это и есть реализация на практике программно-аппаратного комплекса, способного пройти тест Тьюринга. Watson, кстати, породил нынешний бум ботов. Боты призваны вести элементарную беседу. Они используются сегодня во многих странах повсеместно – от торговых площадок до больниц, от полицейских участков до справочных служб.
Другое направление ИИ связывается со способностью программ к самосовершенствованию. Не случайно, что о нейронных сетях, глубоком обучении и ИИ заговорили одновременно. На самом деле известны они были примерно те же 60 лет. Главная проблема была в дороговизне железа, т. е. самих компьютеров, способных выполнять эти программы. Нейронная сеть может эффективно решать конкретные задачи, но при этом никогда не пройдет теста Тьюринга.
Большинство практиков использует третье понимание ИИ. Это – программно-аппаратный комплекс, работающий с использованием нейронных сетей, глубокого обучения и способный общаться с человеком на естественном языке, в том числе посредством голоса.
Если подходить с инженерной точки зрения, то необходимо понять, где компьютеры сильнее людей, и что нам от них нужно. Посмотрим на эту проблему на примере анализа ФБР о провалах и успехах ИИ, связанных с борьбой с криминалом.
На сегодняшний день успехи достигнуты там, где имеются огромные массивы БД, ограниченное время для их анализа и возможность написать программу анализа. Грубо говоря, компьютер превосходит человека там, где имеет место огромная комбинаторика, т. е. наличие множества вариантов, короткое время исполнения и возможность вести анализ чего-либо путем выполнения последовательных операций, т. е. возможность написать алгоритм.
Где на сегодняшний день отмечены наибольшие прорывы? В анализе БД, распознавании образов, поиске незаметных на первый взгляд связей и закономерностей. Отсюда возникает простое заключение. Если бы человек имел бесконечное время на решение той или иной задачи, был дисциплинирован и имел неограниченный объем памяти, то он бы успешно решал все задачи, где компьютер уже сегодня первенствует над человеком. Самые знаменитые достижения компьютеров, подаваемых как ИИ, связаны с победой в играх – от шахмат до го, от покера до «бесконечных шашек». Любая игра имеет правила. А там где есть правила, путь к успеху лежит в комбинаторике и написании алгоритмов.
Приведенные соображения позволили информационным подразделениям ФБР совместно с Лабораторией искусственного интеллекта корпорации Google выработать следующее инженерное определение ИИ. Именно оно положено в разработку концепции архитектуры и перечня программных решений ФБР: ИИ – это программно-аппаратный комплекс, обеспечивающий поддержку и/или принятие результативных решений в динамичной, неустойчивой среде в установленное время, на основе заведомо неполной, нечеткой и не имеющей полной доказательной базы информации. Применительно к одним задачам ИИ самостоятельно принимает решения, но в большинстве случаев является элементом гибридного интеллекта, взаимодействуя с человеком.
Данное определение является инженерным по трем обстоятельствам. Прежде всего, оно задает критерий. Во-первых, результативность решений не носит абстрактного характера, а определяется в каждом конкретном случае постановщиком задачи. В одних случаях у ИИ может отсутствовать право на единственную ошибку, а в других – результативным решением может оказаться показатель, выше уже сложившегося уровня успешности решения проблемы.
Во-вторых, данное определение не привязывается к конкретным видам харда или софта. Возможно, завтра у нас появятся полноценные квантовые компьютеры. В университете Нотр-Дам уже сегодня идут эксперименты по использовании в качестве элементной базы компьютера живых бактерий. То же самое с софтом. Было бы самонадеянным утверждать, что и завтра вычислительные комплексы будут использовать машинное обучение и нейронные сети. Наконец, третий, принципиальный момент в определении – это то, что ИИ обязан научиться работать с неполной и частично лживой информацией. Это, пожалуй, самая сложная проблема.
Термин «ИИ» зачастую заменяет такие сложные и непонятные лицам, принимающим решения, термины, как нейронный сети, глубокое машинное обучение, дискриминантный анализ, многомерная статистика, вычислительная лингвистика и т. п. Согласно данным контент-анализа, приведенного Стэнфордским университетов в 2017 г., ИИ не в социальных СМИ, а в научных изданиях используется как синоним того или иного математико-статистического метода. Условно назовем это маркетинговым использованием термина ИИ. Наиболее широко это явление проявилось в англосаксонских странах, прежде всего США и Великобритании.
Для европейских публикаций и исследований характерно другое использование термина ИИ. В Европе, особенно в Германии и во Франции, ИИ по сути стал синонимом любых сложных экспертных систем, в основе которых лежит блок поиска, обработки и анализа информации. Такое понимание ИИ связано с тем, что в силу целого ряда факторов в большинстве стран ЕС не получили широкого развития наиболее современные методы дискретной математики и работа идет в направлении совершенствования информационно-аналитических систем, которые были созданы в конце XX – начале текущего века.
Свое понимание ИИ имеется в Японии, одной из трех лидирующих стран в этой сфере. Они понимают под ИИ программы, которые могут выполнять интеллектуальные функции человека вне зависимости от сферы их применения.
Авторы уже указанного доклада Центра новой американской безопасности, понимают ИИ также как автор этого термина – знаменитый математик, кибернетик, создатель множества языков программирования Джон Маккарти. Он определили ИИ, как «вычислительные методы, позволяющие решать нечеткие и противоречивые задачи в условиях многокритериального выбора и хронической неполноты информации».