Искусственный интеллект. Большие данные. Преступность
Шрифт:
Создание ИИ носит феноменальный характер. Существует множество различных программноаппаратных комплексов, каждый из которых уникален, а потому феноменален. В отличие от персональных компьютеров, планшетов, смартфонов и т. п. ИИ носят единичный, в крайнем случае, мелкосерийный, но отнюдь не массовый характер. Если явление не носит массового характера, то оно не может быть описано количественно. Соответственно прогноз тенденций в области ИИ – это всегда качественный прогноз.
Другое дело, что отдельные аспекты этого качественного процесса могут иметь количественное выражение, типа знаменитого закона Мура [7] , и тем самым служить ориентиром прогнозирования. При определении тенденции развития сложных явлений, в т. ч. ИИ, сегодня наиболее широко используют Форсайт метод, или сценарное прогнозирование. При том, что форсайт
7
Гордон Эрл Мур (США) – почетный председатель совета директоров и основатель корпорации Intel, основоположник «закона Мура», который сводится к тому, что количество транзисторов в кристалле микропроцессора удваивается каждый год. В 1975 году он изменил временную составляющую закона и заявил об удвоении количества транзисторов каждые два года.
Это неудивительно. Во всех странах мира форсайт составляют статусные люди, которые плоть от плоти сложившейся системы. Соответственно, они видят в будущем линейное, но масштабируемое продолжение настоящего. А это принципиально не так.
В этой связи Центр новой американской безопасности предлагает использовать локусный подход к прогнозированию. Он состоит в том, что в рамках среднесрочного прогноза на горизонте три-пять лет верна мысль известного американского фантаста и мыслителя У.Гибсона: «Будущее уже наступило.
Просто оно пока неравномерно распределено». Для среднесрочных прогнозов локусный подход является не только наиболее эффективным, но и максимально дешевым и простым. Используя отработанные методы распознавания образов и обнаружения аномалий, осуществляется сканирование ноу-хау, разработок, гипотез в той области или сфере знания, применительно к которой осуществляется прогнозирование. Это позволяет выявить локусы будущего, а затем собственно прогноз сводится к тому, чтобы постараться оценить реалистично темпы экспансии этих локусов, как правило, находящихся на периферии, в ключевые сектора мировой и национальных экономик.
Тенденции всегда проявляют себя как возможности, т. е. варианты развития будущего. Практически все эмпирические исследования в области социальной динамики показывают, что у групп действия существует не один, а несколько вариантов поведения практически в любой ситуации.
Любое лицо, принимающее решение, заинтересовано в снижении риска. Собственно, ИИ и является мощнейшим инструментом подавления рисков. Однако это относится к гносеологическим рискам. Они минимизируются за счет получения дополнительной информации и ее глубокой обработки, позволяющей гораздо более достоверно, чем раньше судить о движущих силах и логике той или иной ситуации. Что же касается онтологического риска, то ИИ бессилен перед ним. В конечном счете, ИИ – это мощнейший многофункциональный вычислитель. Если же параметры, которые он вычисляет, предельно нестабильны, носят дискретный, а не непрерывный характер, находятся в состоянии, близком к белому шуму [8] , то даже самый мощный ИИ не сможет оказать большой помощи лицу, принимающему решения.
8
Термин «белый шум» обычно применяется к сигналу, имеющему автокорреляционную функцию. Белый шум некоррелирован по времени (или по другому аргументу), не определяет его значений во временной (или любой другой рассматриваемой аргументной) области.
Использование ИИ позволяет гораздо более реалистично, чем раньше, заблаговременно определить экзистенциональные угрозы, а также позволяет в режиме мониторинга сканировать угрозы со стороны другого участника конфликта.
§ 3. ИИ как технология тройного назначения
ИИ – это технология тройного назначения. ИИ может быть использован как для гражданских, так и для военных целей. Отдельное направление использования ИИ – мафиозно-террористическое. Поскольку некоторые задачи, требующие интеллекта, являются доброкачественными с точки зрения права, а другие – нет, то ИИ обладает свойством тройного использования, также как и человеческий интеллект.
О гражданском, мирном использовании ИИ СМИ сообщают буквально каждый день. Но, откровенно говоря, самое активное использование ИИ наблюдается в военных целях.
Например, Министерство обороны США изучает множество разнообразных направлений использования ИИ. Эта работа ведется в основном в рамках DARPA (Управление перспективных исследовательских проектов Минобороны США) и IARPA (Агентство передовых исследований в сфере разведки). Разработкой стратегии использования ИИ в сфере национальной безопасности и координации исследований занимается Канцелярия помощника Министра обороны по исследованиям и инженерии, а сам помощник несет личную ответственность перед министром обороны, администрацией президента и Конгрессом за максимально эффективное использование ИИ в интересах национальной безопасности [9] .
9
См.: Artificial Intelligence and National Security. Congressional Research Service. 26.04.2018.
В апреле 2017 г. под руководством заместителя министра обороны США по разведке создана и начала активно работать междисциплинарная и многофункциональная команда по разработке стратегии и тактики алгоритмических войн, а также их программно-аппаратному обеспечению со стороны ИИ. Работа этой команды известна как проект Maven. Главная цель проекта Maven состоит в максимально быстром внедрении ИИ в оборонительные и наступательные системы в сфере военного, финансово-экономического и поведенческого противоборства. Проект призван продемонстрировать огромный потенциал технологий ИИ. В рамках проекта на период до 2020 г. поквартально расписаны цели и ресурсы. Информация по проекту Maven доступна комитетам Сената и палаты Представителей по разведке, т. к. относится к засекреченной сфере.
В начале 2018 г. директор проекта Maven заявил: «Maven предназначен для того, чтобы быть пилотным проектом. Он призван продемонстрировать неисчерпаемый потенциал ИИ в сфере алгоритмических войн, а конкретно кибер-, финансово-экономических и поведенческих конфликтов и противоборств, а также в сфере управления и прогнозирования конфликтов на пяти полях боя: на земле, в воздухе, в космосе, под водой и в киберсреде».
Ожидается, что к 2020 г. ИИ даст максимальный эффект в разведке для обработки и анализа больших, в том числе неструктурированных, зашумленных и неполных. Одним из результатов проекта Maven стало создание системы опережающего мониторинга и прогнозирования на основе разнообразных данных действий противника (на примере борьбы с ИГИЛ). Система Cointer-ISIL-Maven начала эксплуатироваться с июля 2017 г., она включает в себя сложный программно-аппаратный комплекс, состоящий как из периферийных систем, так и центрального ИИ. В качестве периферийных систем используются автоматизированные дроны, оснащенные системами компьютерного оптического зрения. Среди принципиально новых модулей центрального ИИ, созданного в рамках проекта, необходимо отметить гибкие модифицированные блоки нейронных сетей с машинным обучением, позволяющих распознавать нечеткую оптическую информацию на уровне более высоком, чем наблюдатели-люди.
Помимо засекреченных, у разведывательного сообщества есть несколько публично рекламируемых исследовательских проектов в области ИИ. На начало 2018 г. только в интересах ЦРУ осуществляется 137 публично финансируемых проектов, связанных с ИИ. В основном эти проекты направлены на решение таких задач, как анализ разнородной структурированной и неструктурированной разноформатной, зашумленной и неполной информации. Более 2 5 проектов связаны с использованием ИИ, в том числе в составе симбиотического интеллекта, совместно с группами экспертов для прогнозирования будущих событий, таких как террористические атаки, гражданские беспорядки, финансово-экономические, политические и военные кризисы и т. п.
IARPA в настоящее время финансирует крупнейший в истории США проект по созданию человеко-машинной платформы симбиотического (гибридного – человек + ИИ) интеллекта для распознавания слабых сигналов в информационном шуме и прогнозирования маловероятных событий. Также ИИ активно используется для разработки алгоритмов одновременного многоязычного распознавания речи и перевода акустической речи в тексты с уровнем, превосходящим применяющиеся в настоящее время системы машинного перевода.