Искусственный интеллект. Машинное обучение
Шрифт:
11. Метод главных компонент (Principal Component Analysis, PCA): Это метод для снижения размерности данных, сохраняя при этом наибольшее количество информации. PCA находит новые признаки (главные компоненты), которые являются линейными комбинациями исходных признаков и позволяют сократить количество признаков, сохраняя при этом основные характеристики данных.
12. Метод оптимизации гиперпараметров (Hyperparameter Optimization): Это процесс подбора наилучших гиперпараметров модели, которые не могут быть изучены во время обучения
Эти методы и алгоритмы представляют лишь часть широкого спектра техник и подходов, используемых в машинном обучении. В зависимости от конкретной задачи и характеристик данных, могут применяться различные комбинации этих методов для достижения оптимальных результатов.
Таксономия задач в машинном обучении относится к классификации задач в соответствии с их характеристиками и типами обучения, которые они включают. Эта классификация помогает структурировать и понять различные типы задач, с которыми сталкиваются исследователи и практики машинного обучения. Она обычно основана на способе представления данных, наличии или отсутствии учителя и типе обратной связи, которую модель получает в процессе обучения.
В данном контексте три основных категории задач машинного обучения выделяются в свете их взаимодействия с данными:
Обучение с учителем (Supervised Learning)
Обучение с учителем (Supervised Learning) представляет собой один из основных типов задач в машинном обучении, при котором модель обучается на основе набора обучающих данных, где каждый пример данных сопровождается правильным ответом или меткой. Этот ответ обычно представляет собой целевую переменную, которую модель должна научиться предсказывать для новых данных. В основе обучения с учителем лежит идея "учителя", который предоставляет модели правильные ответы, по которым модель может корректировать свое поведение.
Примерами задач классификации, решаемых с помощью обучения с учителем, являются определение категории электронного письма (спам или не спам), классификация изображений (например, определение, содержит ли изображение кошку или собаку) и определение типа опухоли на медицинских изображениях.
В случае регрессионных задач, также относящихся к обучению с учителем, модель обучается предсказывать непрерывную переменную на основе имеющихся данных. Например, модель может быть обучена предсказывать цену недвижимости на основе характеристик домов, таких как количество комнат, площадь и местоположение.
Одним из ключевых преимуществ
Давайте рассмотрим пример задачи классификации с использованием обучения с учителем: определение спама в электронных письмах.
Задача: Определить, является ли электронное письмо спамом или не спамом.
Обучающие данные: У нас есть набор обучающих данных, который состоит из множества электронных писем, каждое из которых имеет метку о том, является ли оно спамом или не спамом.
Признаки: Каждое письмо представлено набором признаков, таких как слова, фразы, частота встречаемости определенных слов или символов. Эти признаки могут быть представлены в виде векторов или числовых значений, например, с использованием метода "мешка слов" (bag of words).
Модель: Для решения задачи классификации мы можем использовать алгоритм, такой как наивный байесовский классификатор или метод опорных векторов. В данном случае, давайте выберем наивный байесовский классификатор.
Обучение модели: Мы обучаем наивный байесовский классификатор на обучающем наборе данных, подавая на вход признаки (тексты писем) и соответствующие метки (спам или не спам). Модель анализирует признаки и на основе обучающих данных учится определять, какие слова или фразы чаще встречаются в спамовых письмах, а какие – в нормальных.
Тестирование модели: После обучения модели мы можем протестировать ее на отдельном тестовом наборе данных, который не использовался в процессе обучения. Мы подаем электронные письма из тестового набора на вход модели, и она предсказывает, является ли каждое письмо спамом или не спамом.
Оценка модели: Мы оцениваем качество работы модели, сравнивая ее предсказания с известными правильными ответами из тестового набора данных. Мы можем использовать метрики, такие как точность (accuracy), полнота (recall), точность (precision) и F1-мера, чтобы оценить производительность модели.
Применение модели: После успешного тестирования и оценки модели, мы можем использовать ее для автоматического определения спама в реальном времени для новых электронных писем, поступающих в почтовый ящик.
Рассомтрим пример простого кода на Python для решения задачи классификации спама в электронных письмах с использованием наивного байесовского классификатора и библиотеки scikit-learn:
```python
# Импорт необходимых библиотек
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# Подготовка обучающих данных
Меняя маски
1. Унесенный ветром
Фантастика:
боевая фантастика
попаданцы
рейтинг книги
![Меняя маски](https://style.bubooker.vip/templ/izobr/no_img2.png)