Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:
Рис. 6.10. Заземление питания в общей точке («Мекка» заземления).
В действительности хорошо иметь, как показано на схеме, общую точку заземления («Мекка») для нестабилизированного питания, опорного источника и т. д. Проблему падения напряжения в соединительных проводах между источником питания и нагрузкой с большим током иногда можно решить путем вынесения измерительных элементов: клеммы, ведущие обратно к усилителю ошибки и опорному источнику, выводятся отдельно на клеммную колодку источника питания и могут или присоединяться к выходам стабилизированного напряжения прямо на этом месте (обычный способ), или от них могут быть проложены шины дальше и присоединены к нагрузке рядом с выводами напряжения питания (этот способ требует наличия четерых проводов, два из которых должны
Параллельное включение проходных транзисторов. Если от источника питания требуются большие значения выходного тока, то приходится применять несколько проходных транзисторов, соединенных параллельно. При этом из-за разброса параметра UБЭ приходится последовательно с эмиттером каждого из них ставить небольшой резистор, как показано на рис. 6.11.
Рис. 6.11. Применение «балластных» эмиттерных резисторов при параллельном включении мощных биполярных транзисторов.
Эти резисторы приблизительно одинаково распределяют ток между проходными транзисторами. Значение R выбирается таким, чтобы падение напряжения на резисторе было ~0,2 В при максимальном значении выходного тока. Мощные ПТ могут быть соединены параллельно без дополнительных элементов благодаря отрицательному наклону зависимости их тока стока от температуры (рис. 3.13).
Область безопасной работы (ОБР). Последнее замечание о мощных транзисторах: явление, известное как «лавинный пробой», ограничивает одновременно и ток, и напряжение, которое может быть приложено к любому конкретному транзистору, поэтому изготовителем указывается область безопасной работы (это совокупность диапазонов безопасных напряжений при данном токе в зависимости от времени его протекания). Лавинный пробой связан с образованием «горячих точек» в транзисторных переходах и возникающем вследствие этого неравномерном распределении полного тока нагрузки. Этот факт накладывает на ток коллектора более жесткие ограничения, чем максимум рассеиваемой мощности (кроме случаев малых напряжений между коллектором и эмиттером). На рис. 6.12 показана область безопасной работы для широко применяемого транзистора 2N3055.
Рис. 6.12. Область безопасной работы мощного биполярного транзистора 2N3055 (с разрешения Motorola, Inc.).– - - ограничен сечением выводов; – -- температурное ограничение Тк = 250 °C (отдельные импульсы); _____ ограничение лавинного пробоя.
При UКЭ> 40 В лавинный пробой ограничивает постоянный ток коллектора до величин меньших, чем позволяет максимальное значение рассеиваемой мощности (115 Вт). На рис. 6.13 показана область безопасной работы для двух подобных друг другу мощных высокочастотных транзисторов: биполярного n-p-n– транзистора 2N6274 и n– канального МОП-транзистора VNE003A.
Рис. 6.13. Сравнение ОБР мощного биполярного n-p-n– транзистора и n– канального МОП-транзистора. – -- 26274 (nрn); ____ VNE003A (n– канальный МОП).
При UКЭ > 10 В лавинный пробой ограничивает постоянный ток коллектора n-р-n– транзистора значениями, соответствующими мощности рассеяния меньшей, чем максимально допустимая паспортная величина 250 Вт. Эта проблема не столь серьезна для коротких импульсов и фактически перестает просматриваться при длительности импульсов менее 1 мс.
Обратите внимание на то, что МОП-транзистор не подвержен лавинному пробою; его ОБР ограничена максимально допустимым током (ограничение вносит сечение проводников, а их сопротивление для коротких импульсов тока выше, чем на постоянном токе), допустимой мощностью рассеяния и максимально допустимым напряжением затвор-исток. Более подробно об этом сказано в гл. 3, там где рассматриваются мощные транзисторы.
6.08.
Часто возникает необходимость в наличии такого источника питания, который можно регулировать вплоть до нулевого напряжения, особенно в случае стендовых источников, где такая гибкость существенна. Кроме того, часто целесообразно «программировать» выходное напряжение каким-либо другим напряжением, цифровым кодом или, например, ручным переключателем. На рис. 6.14 показана классическая схема источника питания, допускающая регулировку Uвых вплоть до нулевого (в отличие от схем, использующих ИМС 723).
Рис. 6.14. Стабилизатор с регулируемым до 0 В выходом.
Отдельный расщепленный источник питания питает стабилизатор и дает точное опорное отрицательное напряжение (об опорных источниках подробнее см. разд. 6.14 и 6.15). Резистор R1 служит для установки выходного напряжения, и, так как инвертирующий вход потенциально заземлен, оно может меняться до нуля (при нулевом сопротивлении R1). Поэтому когда схема стабилизатора (это может быть интегральная схема или собранная из отдельных элементов) питается от расщепленного источника, не возникает трудностей, обусловленных низким выходным напряжением.
Чтобы сделать стабилизатор программируемым внешним напряжением, просто заменим Uоп напряжением, задаваемым извне (рис. 6.15). Остальная часть схемы останется без изменений.
Рис. 6.15.
Резистор R1 теперь будет масштабировать Uупр. Управление цифровым кодом можно получить заменой опорного напряжения на устройство, называемое «цифро-аналоговый преобразователь» (ЦАП) с токоотбирающим выходом. Эти устройства, которые мы рассмотрим позже, преобразуют двоичный код на входе в пропорциональный по току (или напряжению) сигнал на выходе. Хорошим выбором здесь будет устройство AD7548-монолитный 12-разрядный ЦАП с токоотбирающим выходом стоимостью около 9 долл. Заменив R2 на ЦАП, получим источник питания, программируемый цифровым кодом с шагом задания выходного напряжения, равным 1/4096 (2– 12). Так как на инвертирующем входе потенциальная земля, от ЦАП не требуется значительного рабочего диапазона по напряжению. На практике R1 используется для выставления определенного масштаба преобразования цифрового кода, например 1 мВ на единицу входного кода.
6.09. Пример схемы источника питания
Лабораторный стенд питания, схема которого показана на рис. 6.16, дает возможность собрать вместе все проектные идеи.
Рис. 6.16. Лабораторный блок питания.
Для стендового питания общего назначения важна возможность регулировать выход стабилизированного питания вплоть до нулевого напряжения, поэтому для питания стабилизатора используется дополнительный расщепленный источник. ИС1 — это высоковольтный операционный усилитель, который может работать при полном напряжении питания 80 В. На выходе в качестве проходного транзистора мы использовали параллельно включенные мощные МОП-транзисторы, исходя из двух соображений — простоты возбуждения затвора и превосходной ОБР (характеристическая особенность всех мощных МОП-транзисторов). Такая комбинация обеспечивает рассеяние достаточной мощности (60 Вт на транзистор при температуре корпуса 100 °C), необходимую даже для умеренных значений тока, если обеспечивается столь широкий диапазон выходного напряжения. Последнее объясняется тем, что нестабилизированное входное напряжение должно быть достаточно большим, чтобы обеспечить максимум стабилизированного выходного напряжения, а в результате при низком напряжении на выходе падение напряжения на проходных транзисторах будет большим. В некоторых источниках эта проблема решается тем, что используется несколько диапазонов выходного напряжения и соответственно этому переключается и нестабилизированное входное напряжение. Имеются даже схемы, в которых нестабилизированный вход поступает с регулируемого напряжением трансформатора, управляемого в такт с выходом. В обоих случаях, правда, теряется возможность дистанционного программирования.