Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:
На рис. 6.25 показана другая весьма популярная схема стабилитрона «запрещенной зоны» (заменена обведенная часть схемы рис. 6.24).
Рис. 6.25.
Т1и Т2 – согласованная пара транзисторов, вынужденная благодаря обратной связи по разности напряжений коллекторов работать при отношении токов коллекторов 10:1. Разность напряжений UБЭ, равная (kT/q)ln 10, делает ток эмиттера Т2
ИМС опорных источников с напряжением запрещенной зоны. Примером стабилитрона с напряжением запрещенной зоны является недорогая двухвыводная схема LM385-1.2, имеющая номинальное рабочее напряжение 1,235 В ± 1 % (ее собрат LM385-2.5 имеет встроенную схему для генерации 2,5 В), работоспособную при токах вплоть до столь малых значений как 10 мкА. Это много меньше, чем можно было бы требовать от любого стабилитрона, и это делает данные ИМС прекрасным образом подходящими для микромощных приборов (см. гл. 14). Столь низкое опорное напряжение (1,235 В) часто намного более удобная вещь, чем номинальное рабочее напряжение стабилитронов 5 В (вы можете встретить стабилитроны с номинальным напряжением 3,3 В, однако у них совершенно ужасные характеристики с очень плавным изгибом). Лучшие образцы из ряда LM385 гарантируют температурный коэффициент не хуже 30·10– 6/°С и типичное значение динамического сопротивления 1 Ом при токе 100 мкА. Сравним эти величины с теми же параметрами стабилитрона 1N4370 на 2,4 В: температурный коэффициент 800·10– 6/°С (тип.), динамическое сопротивление около 3000 Ом при токе 100 мкА, и одновременно при этом же токе «напряжение стабилизации» (определяемое в спецификации как 2,4 В при токе 20 мА) составляет около 1,1В! Когда вам нужно прецизионно стабильное напряжение, эти превосходные ИМС на UБЭ– стабилитроне кладут обычные стабилитроны на лопатки.
Если вы готовы выложить чуть больше денег, то сможете найти опорные источники на UБЭ– стабилитронах с превосходной стабильностью, например такие, как двухвыводной LT1029 или трехвыводной REF-43 (2,5 В, 3·10– 6/°C макс). Последний тип, так же как и трехвыводные источники опорного напряжения на стабилитронах, нуждается в источнике питания постоянного тока. В табл. 6.7 перечислены большинство из имеющихся источников опорного напряжения (на стабилитронах и UБЭ– стабилитронах, двух- и трехвыводные).
Одним из интересных источников опорного напряжения является ИМС TL431C. Это недорогой источник опорного напряжения на «программируемом стабилитроне»; его схема включения показана на рис. 6.26. «Стабилитрон» включается, когда управляющее напряжение достигает 2,75 В («стабилитрон» сделан по схеме UБЭ); этот прибор по управляющему входу потребляет ток всего лишь в несколько микроампер и имеет температурный коэффициент выходного напряжения около 10– 5/°С. При указанных на схеме значениях параметров на выходе получается стабилизированное напряжение 10 В. Эти приборы выпускаются в двухрядных корпусах мини-DIP и могут работать при токах до 100 мА.
Рис. 6.26.
Температурные
Трехвыводные прецизионные источники опорного напряжения. Ранее мы уже отмечали, что возможно создание источников опорного напряжения с отличной температурной стабильностью (до 10– 6/°С и даже лучше). Это особенно впечатляет, когда вы видите, что имеющий почтенный возраст элемент Вестона - традиционный, прошедший через века источник опорного напряжения, — имеет температурный коэффициент порядка 4·10– 5/°С (см. разд. 15.11). Вот два способа получения таких источников.
1. Температурно-стабилизированные источники опорного напряжения. Хороший подход к получению превосходной температурной стабильности источников опорного напряжения или других схем заключается в обеспечении работы источников опорного напряжения и, возможно, связанных с ними схем при постоянной повышенной температуре. В гл. 15 будут показаны простые приемы осуществления этой идеи (один очевидный способ состоит в организации управления нагревателем с помощью температурного датчика UБЭ).
Таким образом можно добиться сильного уменьшения зависимости характеристик схемы от колебаний внешней температуры. Для прецизионной схемотехники представляет интерес метод помещения хорошо температурно-компенсированного опорного источника в условия постоянной температуры, что значительно улучшает его характеристики.
Подобная техника температурно-стабилизированных или «термостатированных» схем применяется уже много лет, в частности для создания сверхстабильных генераторов. Существуют не слишком дорогие источники питания и опорные источники напряжения, в которых используются термостатированные опорные схемы. Этот метод дает хорошие результаты, но имеет свои недостатки: громоздкость и сравнительно большую потребляемую нагревателем мощность, а также медленный разогрев и выход на режим (обычно 10 или более минут). Эти проблемы легко снять, если стабилизировать температуру на уровне кристалла ИМС (чипа) включением нагревательной схемы вместе с датчиком в состав самой интегральной схемы. Этот подход был впервые опробован в 60-х годах фирмой Fairchild, выпустившей температурно-стабилизированную дифференциальную пару 726 и предусилитель постоянного тока 727.
Позже появились «термостатированные» источники опорных напряжений, такие, как серия National LM199. ИМС этой серии имеют температурный коэффициент (типовое значение) 0,00002 %/°С, или 2·10– 7/°С. Такие опорные источники установлены в стандартных транзисторных корпусах ТО-46. Их нагреватели потребляют мощность 0,25 Вт и разогреваются до нужной температуры за 3 с. Пользуясь этими схемами, следует отдавать себе отчет в том, что последующие схемы на операционных усилителях, и даже проволочные прецизионные резисторы с их температурным коэффициентом ±2,5·10– 6/°С, могут сильно испортить характеристики, если при проектировании не принять крайних мер предосторожности. В частности, приходится учитывать даже дрейф прецизионных ОУ с очень низким уровнем дрейфа, таких, как ОР-07, с типовым значением дрейфа входного каскада 0,2 мкВ/°С. Эти аспекты проектирования прецизионных схем рассматриваются в гл. 7 в разд. 7.01– 7.06.
При использовании LM399 существует одна опасность: чип может выйти из строя, если напряжение питания нагревателя хотя бы на короткий момент времени упадет ниже 7,5 В. Источник опорного напряжения с запрещенной зоной LT1019 хотя и работает в нормальных условиях без подогрева, однако имеет встроенные в кристалл нагреватель и датчик. Поэтому его можно включать так же, как и LM399, получая температурный коэффициент менее 2·10– 6/°С. Однако в отличие от LM399 для LT1019 требуется некоторая внешняя схемная обвязка, чтобы получить термостат (ОУ и с полдюжины элементов).