Чтение онлайн

на главную

Жанры

Искусство схемотехники. Том 2 (Изд.4-е)
Шрифт:

Тш = Т(10КШ(дБ)/10 — 1),

КШ(дБ) = 10·lg(Тш/Т + 1),

где T — температура окружающей среды, обычно принимаемая равной 290 К.

Вообще говоря, хорошие малошумящие усилители имеют температуру шума гораздо ниже комнатной (или это эквивалентно тому, что коэффициент шума у них много меньше 3 дБ). Позже в этой главе мы объясним, как можно измерить коэффициент (или температуру) шума усилителя. Вначале, однако, нам нужно разобраться в шумах транзисторов и методах проектирования малошумящих схем. Мы надеемся, что последующие рассуждения прояснят то, что часто покрыто мраком непонимания. Мы уверены, что, прочитав следующие два раздела, вы никогда больше не будете введены в заблуждение коэффициентом шума!

7.13. Шум тока и напряжения транзисторного усилителя

Шум, порождаемый усилителем, легко описать с помощью простой

модели, достаточно точной для многих целей. На рис. 7.42 еш обозначает источник шума напряжения, последовательный по отношению к входному сигналу, а iш обозначает шум входного тока. Транзистор (и вообще усилитель) предполагается бесшумным и просто усиливает напряжение входного шума, которое приходит к нему.

Рис. 7.42. Модель шумов транзистора.

Таким образом, усилитель дает полное напряжение шума еу, которое, будучи отнесено ко входу, равно

eу. эфф = [е2ш+ (Rиiш)2]1/2 В/Гц1/2

Два слагаемых в скобках — это просто входное напряжение шума и напряжение шума, порождаемое прохождением шума входного тока усилителя через сопротивление источника. Так как эти два шума обычно не коррелированы, то, складывая квадраты их амплитуд, получим эффективное напряжение шума, поступающего на усилитель. При малом сопротивлении источника преобладает шум напряжения еш, а при большом — шум тока iш.

На рис. 7.43 для иллюстрации приведены кривые зависимости еш и iш от IK и f для 2N5087. Сейчас мы постараемся вникнуть в некоторые детали, описывая эти величины и демонстрируя, как вести проектирование для минимизации шума. Стоит отметить, что шум напряжения и тока для транзистора лежит в диапазоне нановольт и пикоампер на корень из герца.

Рис. 7.43. Зависимость эквивалентного среднеквадратичного входного напряжения шума еш и входного тока шума iш от коллекторного тока для p-n– транзистора 2N5087.

(Fairchild Camera and Instrument Corp.).

Шум напряжения еш. Эквивалентный генератор шумового напряжения рассматривают как включенный последовательно с базой транзистора. Этот генератор представляет сумму теплового шума, порожденного объемным сопротивлением базы rб, и дробового шума коллекторного тока, порождающего шум напряжения на дифференциальном сопротивлении эмиттера rЭ. Эти два слагаемых имеют следующий вид:

е2ш = 4kTrб + 2qIKr2Э = 4kTrб + 2(kT)2/(qIK) В2/Гц

Они являются гауссовскими белыми шумами. В дополнение к этому существует некоторый фликкер-шум, порожденный прохождением тока базы через rб. Он существен только при больших токах базы, т. е. при больших токах коллектора. Поэтому величина еш постоянна в большом диапазоне значений тока коллектора; она увеличивается при малых токах (дробовой шум тока через возрастающее сопротивление rЭ) и при достаточно больших токах (шум фликкер-эффекта от прохождения IБ через rб. Последний эффект существен только на низких частотах из-за зависимости 1/f. Например: на частотах свыше 10 кГц у 2N5087 еш равно 5 нВ/Гц1/2 при IK = (10 мкА и 2 нВ/Гц1/2 при IK = 100 мкА. На рис. 7.44 показаны кривые зависимости еш от частоты и тока для малошумящей дифференциальной nрn

пары LM394 и малошумящего 2SD786 производства фирмы Toyo-Rohm. В последнем используется специальная геометрия для достижения необычайно низкого rб = 4 Ом, что позволяет получить самые низкие на сегодня значения еш.

Рис. 7.44. Зависимость входного напряжения шума еш от коллекторного тока для двух малошумящих биполярных транзисторов.

Шум тока iш. Шумовой ток следует учитывать, так как он порождает дополнительный шум напряжения на полном сопротивлении источника сигнала. Основным источником шума тока являются флуктуации дробового шума в установившемся токе базы, складывающиеся с флуктуациями за счет фликкер-шума в rб. Вклад дробового шума — это шум тока, возрастающий пропорционально корню квадратному из IБ (или IK) и имеющий плоский частотный спектр, в то время как составляющая фликкер-шума растет с IK быстрее и имеет обычную частотную зависимость вида 1/f. Взяв опять для примера 2N5087 на частотах свыше 10 кГц, имеем iшоколо 0,1 пА/Гц1/2 при IK = 10 мкА и 0,4 пА/Гц1/2 при IK = 100 мкА. Шум тока растет, а шум напряжения спадает при увеличении IK. В следующем разделе мы увидим, как это обстоятельство определяет выбор значений рабочих токов в малошумящих схемах. На рис. 7.45 показаны графики зависимости iш от частоты и тока для малошумящей пары LM394.

Рис. 7.45. Входной ток шума для биполярного транзистора LM394. а — зависимость от тока коллектора; б — зависимость от частоты.

7.14. Проектирование малошумящих схем на биполярных транзисторах

Факт, что еш падает, а iш растет с ростом тока IK, дает возможность оптимизировать рабочий ток транзистора для получения минимального шума при данном источнике сигнала. Снова взглянем на модель (рис. 7.46).

Рис. 7.46. Модель шумов усилителя.

«Бесшумный» источник сигнала uи имеет добавку в виде генератора напряжения шума (теплового шума его внутреннего сопротивления) e2 = 4kTRиВ2/Гц. Усилитель добавляет сюда свой собственный шум:

е2у = е2ш + (iшRи)2 В2/Гц.

Таким образом, напряжение шума усилителя добавляется к входному сигналу и кроме того шум тока усилителя порождает шум напряжения на внутреннем сопротивлении источника. Эти два шума не коррелированы (за исключением очень высоких частот) и их квадраты складываются. Наша цель-как можно сильнее уменьшить общий шум усилителя. Это легко сделать, если известно Rи, так как достаточно посмотреть на зависимость еш и iш от IK на частотах сигнала и выбрать IK, минимизирующее е2ш + (iшRи)2. Если вам повезло и у вас есть карта линий уровня коэффициента шума на поле IK и Rи, то вы быстро сможете определить оптимальное значение IK.

Поделиться:
Популярные книги

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Сердце Дракона. Том 10

Клеванский Кирилл Сергеевич
10. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.14
рейтинг книги
Сердце Дракона. Том 10

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Низший

Михайлов Дем Алексеевич
1. Низший!
Фантастика:
боевая фантастика
7.90
рейтинг книги
Низший

Разведчик. Заброшенный в 43-й

Корчевский Юрий Григорьевич
Героическая фантастика
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.93
рейтинг книги
Разведчик. Заброшенный в 43-й

Император

Рави Ивар
7. Прометей
Фантастика:
фэнтези
7.11
рейтинг книги
Император

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Возвращение Безумного Бога 5

Тесленок Кирилл Геннадьевич
5. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 5

Рядовой. Назад в СССР. Книга 1

Гаусс Максим
1. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Рядовой. Назад в СССР. Книга 1

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница

Теневой Перевал

Осадчук Алексей Витальевич
8. Последняя жизнь
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Теневой Перевал

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

По дороге пряностей

Распопов Дмитрий Викторович
2. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
5.50
рейтинг книги
По дороге пряностей