Искусство схемотехники. Том 2 (Изд.4-е)
Шрифт:
Шаг 2. Составим карту Карно. Она представляет собой нечто очень близкое к таблице истинности, но содержит переменные, которые расположены по двум осям. Переменные должны быть расположены таким образом, чтобы при переходе от каждого квадрата к соседнему менялось бы состояние только одного входа (рис. 8.27).
Рис. 8.27. Карта Карно.
Шаг 3. Отметим на карте группы, содержащие 1 (можно также использовать и группы, содержащие 0). Три овала на рис. 8.27 определяют логические выражения АВ,
Q = АВ + АС + ВС,
схемная реализация ее показана на рис. 8.28.
Рис. 8.28.
Этот результат кажется очевидным, когда он уже получен. Можно было бы составить выражение для нулей и вместо этого получить
Q = А'В' + А'С + В'С.
Это выражение может оказаться полезным для случая, когда в каких-либо точках схемы имеются дополнения А', В' и С.
Некоторые комментарии к картам Карно.
1. Ищите группы, содержащие 2, 4, 8 и т. д. квадратов. Они имеют простые логические выражения.
2. Логика будет тем проще, чем крупнее блок вы опишете.
3. Состыкуйте края карты Карно. Например, карта на рис. 8.29 описывается выражением Q = В'С.
Рис. 8.29.
4. Блок «единиц», содержащий один или два «нуля», лучше всего описывается с помощью группировки, показанной на рис. 8.30. Этому блоку соответствует логическое выражение Q = A(BCD)'.
Рис. 8.30.
5. Места, содержащие X (любое значение), представляют собой «карт-бланш». Записывайте в них «нули» или «единицы» так, чтобы можно было получить простейшую логику.
6. Карта Карно может и не привести к лучшему решению. Иногда более сложное логическое выражение имеет более простую схемную реализацию, например в случае, когда некоторые члены выражения уже сформированы схемой в виде логических сигналов, которые можно использовать в качестве входных. Кроме того, реализации Исключающего ИЛИ не очевидны из карты Карно. Наконец, при выборе логической структуры схемы определенную роль играют ограничения, связанные с конструкцией ИМС (например, когда в одном корпусе содержатся четыре 2-входовых вентиля). Когда используются такие программируемые логические устройства как ПМЛ для конструирования логических функций, внутренняя структура (программируемые вентили И и фиксированные вентили ИЛИ) сдерживает реализацию, которая могла бы быть применена.
Упражнение 8.13. Нарисуйте карту Карно для логики, которая позволит определить, является ли 3-разрядное двоичное число «главным», считая при этом, что главными не являются числа 0, 1 и 2. Дайте схемную реализацию на 2-входовых вентилях.
Упражнение 8.14. Найдите логическое выражение, с помощью которого можно было бы умножить два 2-разрядных двоичных числа и получить 4-разрядный результат. Рекомендации: для каждого выходного бита пользуйтесь отдельными картами Карно.
8.14. Комбинационные функциональные схемы, реализованные на стандартных ИМС
С помощью карт Карно можно построить логику, чтобы выполнять достаточно сложные функции, такие, как, например, двоичное сложение и сравнение величин, контроль по паритету, мультиплексирование (выбор одного из нескольких входов, который определяется двоичным адресом) и т. п. В реальности сложные функции, которые используются наиболее часто, реализуются в виде функциональных ИМС средней степени интеграции (до 100 вентилей в корпусе). Хотя в состав многих из этих СИС входят триггеры, которые мы скоро будем рассматривать, большинство из них выполняют чисто комбинационные функции и состоят целиком из одних вентилей. Давайте посмотрим, «какие звери населяют зоопарк, именуемый комбинационные интегральные схемы средней степени интеграции.»
Счетверенная 2-входовая схема выборки. Весьма полезным устройством является счетверенная 2-входовая схема выборки. Она фактически представляет собой 4-полюсный двухпозиционный переключатель логических сигналов. Основная идея такого переключателя иллюстрируется рис. 8.31.
Рис. 8.31. Счетверенный 2-входовый селектор.
Когда вход ВЫБОР (SELECT-SEL на рисунке) имеет низкий уровень, сигналы на выходах Q поступают с соответствующих входов А, при высоком уровне на входе ВЫБОР — со входов В. Когда высокий уровень действует на входе РАЗРЕШЕНИЕ (ENABLE-E на рисунке), все выходы устройства принудительно устанавливаются в состояние низкого уровня. Несколько позже мы рассмотрим эту важную идею более подробно, а сейчас приведем лишь таблицу истинности, в которой X означает, что состояние данного входа не имеет значения, В — высокий уровень, — низкий уровень.
Схема на рис. 8.31 и ее таблица истинности соответствуют схеме `157. Та же самая функция реализуется также с инверсным выходом (`158) и с выходом на 3 состояния (прямые выходы; `257; инверсные: `258).
Упражнение 8.15. Покажите, как с помощью вентилей И-ИЛИ-НЕ построить 2-входовую схему выборки.
Хотя в некоторых случаях функцию выборки можно реализовать с помощью механического переключателя, тем не менее по ряду причин предпочтительнее использовать вентили. Вентильная схема обладает следующими преимуществами: а) она дешевле; б) коммутация всех каналов производится быстро и одновременно; в) с помощью логических сигналов, сформированных в устройстве, можно производить переключение практически мгновенно; г) даже тогда, когда управление выборкой осуществляется от переключателя, расположенного на передней панели устройства, для того чтобы избежать воздействия помехи и снижений уровней за счет влияния емкостей, логические сигналы лучше не пропускать через кабели и переключатели. Так как избираемый вентиль отпирается уровнем постоянного напряжения, логические сигналы управления могут быть взяты с той же платы, на которой он расположен. Это позволяет сократить внешние связи (достаточно одной линии с нагрузкой, коммутируемой на землю с помощью однополюсного тумблера). Такой способ управления логической схемой с помощью внешних уровней постоянного напряжения называют «холодной коммутацией». Он оказывается более предпочтительным, чем непосредственное управление сигналами от ключей, потенциометров и т. п. Кроме прочих преимуществ холодная коммутация позволяет вести управляющие линии, шунтированные конденсаторами, подавляя тем самым взаимные наводки, в то время как сигнальные линии в общем случае шунтировать конденсаторами нельзя. Некоторые примеры холодной коммутации нам еще встретятся в дальнейшем.
Передающие вентили. Как уже указывалось в разд. 3.11 и 3.12, с помощью элементов КМОП можно построить «передающий вентиль». Это — два параллельно включенных комплементарных ключа на полевых МОП-транзисторах, через которые входной (аналоговый) сигнал, лежащий в пределах от 0 до UСС, может либо непосредственно подаваться на выход через низкое сопротивление (несколько сотен омов), либо отрываться (выходное сопротивление фактически равно бесконечности). Как вы, наверное, помните, такие устройства являются двунаправленными и для них не имеет значения, какой из выходов используется в качестве входа, а какой в качестве выхода.