Искусство схемотехники. Том 3 (Изд.4-е)
Шрифт:
Из уравнений, приведенных выше, видно, что простой квадратичный смеситель формирует на выходе сигналы одинаковой амплитуды как для суммы, так и для разности частот. В связи (т. е. супергетеродинный радиоприемник), где смесители часто используют для сдвига частотной полосы, иногда требуется подавить один из этих выходных сигналов смесителя. В разд. 13.16 мы видим, как изготовляются смесители с подавлением зеркальной частоты.
Умножители частоты. Для генерации сигналов с частотой, кратной входному сигналу, часто применяют нелинейные схемы. Это особенно удобно, если требуется получить очень стабильный высокочастотный сигнал с частотой, превышающей область хороших кварцевых генераторов. Самый распространенный метод — сместить усилительный каскад в область сильной нелинейности,
Аттенюаторы, волноводные тройники, циркуляторы. Существует несколько весьма полезных пассивных устройств, служащих для управления амплитудой и направлением сигналов ВЧ, проходящих между схемными модулями. Все они являются компонентами широкополосных линий передач (или волноводов) и должны вставляться в линии с постоянным сопротивлением, обычно равным 50 Ом. Эти устройства в большом количестве выпускаются в виде модулей.
Простейшим из них является аттенюатор — прибор, предназначенный уменьшать амплитуду сигнала. Аттенюаторы изготовляются либо с большой ручкой управления и точно калиброванными ступеньками ослабления, либо управляемые напряжением. Последние представляют собой просто балансный смеситель, у которого ток управления подается на один из перемножаемых входов. Фиксированные аттенюаторы (рис. 13.27) удобны для снижения уровня сигналов между элементами, смонтированными в виде модулей радиочастотной системы с 50-омным трактом; они также уменьшают любое возможное рассогласование сопротивления.
Рис. 13.27. Фиксированные аттенюаторы. (С разр. Merrimac Industries. Inc.) A — BNC. Б — mN. В — SMA.
Волноводные тройники (также известные как «разгоны», магические Т, 3-дБ ответвители, равносторонние или ИЗО-Т) — искусно построенная линия передачи с 4 портами (входами-выходами). Сигнал, подаваемый на любой порт, на двух ближайших портах имеет определенный сдвиг фаз (обычно 0 или 180°). Ответвитель, у которого один порт нагружен на волновое сопротивление, называется 3-портовым «разветвителем (собирателем) мощности».
Чтобы сделать разветвитель/собиратель многопортовым, его строят каскадами. Ближайшим родственником ответвителей является устройство связи направленного действия — трехпортовый прибор, в котором небольшая часть проходящей на выход волны ответвляется в третий порт. В идеальном случае на третьем порту нет выхода для волны, идущей в противоположном направлении.
Самыми волшебными свойствами в этой главной группе устройств обладают циркуляторы и вентили-разделители. Благодаря использованию экзотических ферритовых материалов и магнитных полей в них достигается невозможное: передача волны только в одном направлении. Вентиль-разделитель имеет два порта и допускает передачу только в одном направлении. Циркуляторы имеют три или более портов, и они передают входящий на каком-либо порту сигнал только к следующему в ряду порту.
Фильтры. Как будет видно из дальнейшего, при конструировании радиочастотных схем часто бывает необходима частотная избирательность. Хорошим примером избирательной системы может служить простой настраиваемый LC-усилитель, у которого острота пика характеристики определяется добротностью Q контура LC.
Если необходимо иметь фильтр, пропускающий очень узкую полосу частот без ослабления сигнала с резкими спадами на границах полосы, то такой полосовой фильтр с превосходными свойствами можно создать, используя пьезоэлектрический (керамический или на кристалле кварца) или механический резонатор. Промышленностью выпускаются 8- и 16-полюсные кристаллические фильтры с центральной частотой в пределах от 1 до 50 МГц и шириной полосы от самой маленькой, в несколько сотен герц, до нескольких килогерц. Эти фильтры чрезвычайно полезны для получения высокой избирательности приемников и для высококачественной генерации модулированных сигналов. Фильтры с поверхностными акустическими волнами (ПАВ) стали популярными и дешевыми недавно. Они тоже могут иметь плоскую характеристику пропускания с очень крутыми краями. Этот очень важный параметр обычно выражается в виде «фактора формы»; например, отношение ширины полосы для —3 дБ к ширине полосы для —40 дБ может достигать величины 1,1. Чаще всего фильтры ПАВ используются в телевизионных приемниках и кабельных системах для ограничения полосы пропускания приемника.
Конечно, если не требуется такая узкая полоса пропускания, можно строить фильтры с увеличенным числом резонансных LC-секций. В приложении 3 приведены примеры некоторых LC-фильтров верхних и нижних частот.
Детекторы. Извлечение информации из модулированного радиочастотного сигнала основано на детектировании — процессе выделения модулирующего сигнала на фоне «несущей». В зависимости от вида модуляции (AM, ЧМ, на одной боковой полосе и др.) имеется несколько методов детектирования. Обсуждение этой важной темы мы будем проводить вместе с вопросами организации связи.
13.13. Измерение амплитуды и мощности
Как мы скоро увидим, детектирование АМ-сигнала является просто генерацией напряжения, пропорционального мгновенной амплитуде модулируемого ВЧ-сигнала. Во многих других применениях (радиоастрономия, лабораторные ВЧ-измерения, «нивелировка» сигналов генератора, проектирование фильтров, наблюдения и т. д.), очень важно бывает иметь возможность измерять амплитуду и мощность ВЧ-сигналов. Поэтому, прежде чем переходить к обсуждению организации связи, рассмотрим некоторые касающиеся этого вопроса схемы и методы.
Выпрямление сигналов. В разд. 1.30 мы показали, как использовать простой диод для получения выходного напряжения пропорционального амплитуде сигнала. Мы показали, как компенсировать падение напряжения на диоде с помощью второго диода, обеспечивающего смещение порядка 0,6 В, если характеристика диода еще не имеет резкого изменения. В разд. 4.18 показано, как обойти диодную нелинейность и обеспечить смещение путем включения диода в цепь обратной связи операционного усилителя и формируя таким образом схему точного выпрямления (или выделения абсолютного значения сигнала).
Каждая из таких схем не лишена проблем. Преимуществом простых диодных детекторов является работа в аномально широкой области частот (до ГГц, если правильно подобрать диоды), но они нелинейны при низких уровнях сигналов. Использование диодов Шоттки (основные носители) в некоторой степени помогает, так как прямое напряжение для них ниже. Вы можете значительно улучшить ситуацию, если перед выпрямлением пропустите сигнал через предусилитель (это используется, например, в «детекторе уровня» усилитель/диод UTD-1000 Avantek); однако этот путь ограничивает динамическую область из-за насыщения усилителя (UTD-1000 имеет область 30 дБ и работает на частотах от 10 до 1000 МГц). Активный выпрямитель, наоборот, высоко линеен; но он хорошо работает только в области относительно низких частот и совместно со схемами операционных усилителей. Можно, конечно, использовать быстродействующие ОУ, но все равно вы будете ограничены частотой 10 МГц или около этого.