Искусство схемотехники. Том 3 (Изд.4-е)
Шрифт:
Чтобы определить точку начала высокочастотного спада, надо рассмотреть каждый каскад, анализируя различные RC, используя соответствующие эквивалентные схемы. Обычно имеется один каскад, который имеет самую низкую граничную частоту, и часто интуитивно можно правильно угадать, какой именно. В данной схеме ограничивающим фактором является конечное полное сопротивление цепи базы каскада на Т7 (300 Ом) в сочетании с собственной емкостью Т7 и емкостью нагрузки Сн, частично шунтирующей базу Т7 (помните, что h21э изменяется приблизительно
Упрощенный метод расчета точки спада —3 дБ, который мы применим, будет состоять в следующем. Взяв эквивалентную схему эмиттерного повторителя на Т7, определим импеданс цепи базы при известных емкостях нагрузки, переходов и проводов (полагаем, что Скб = 0,5 пФ, Скэ = 0,2 пФ и Сп = 0,3 пФ).
Поскольку полное сопротивление цепи базы при известных емкостях нагрузки зависит от h21э, следовало бы рассчитать его как функцию частоты (положив h21э ~= 1/f на высоких частотах); но вместо этого оценим его при нескольких значениях частоты, предполагая, что точка — 3 дБ должна лежать где-то вблизи нескольких сот мегагерц. На рис. 13.12 дан итог этого процесса.
Рис. 13.12. Эквивалентные схемы для расчета верхней сопрягающей частоты схемы рис. 13.10.
Полное сопротивление нагрузки было рассчитано на частотах 100, 200 и 400 МГц, далее умножено на коэффициент усиления транзистора по току (учитывается, что h21э ~= 1/f), скомбинировано с другими импедансами, которые всегда имеются в цепи базы, а затем определялось результирующее значение импеданса, чтобы получить относительные значения выхода в функции частоты. Как можно видеть, выходное напряжение снижается на —3 дБ на частоте, равной приблизительно 180 МГц.
Теперь, используя эту оценку граничной частоты, следует посмотреть, будут ли другие RС-цепи давать значительное ослабление на этой частоте. Например, для каскада на Т4 коллекторная цепь должна вызывать снижение усиления на — 3 дБ вблизи 1000 МГц, если в качестве расчетного значения h21э принять усиление транзистора на 180 МГц (h21э ~= 5). Другими словами, каскадная часть схемы не ухудшает общую характеристику.
Этим простым способом можно непосредственно удостовериться, что другие цепи схемы не вносят более низких частот ослабления —3 дБ. При рассмотрении входного каскада следует задаться определенным значением сопротивления источника сигнала. При Zн = 1000 Ом (довольно высокое сопротивление для видеосхем, подобных этой) окажется, что сочетание сопротивления источника и входной емкости (1,0 кОм, 0,8 пФ) даст точку ослабления — 3 дБ вблизи 200 МГц. Таким образом, характеристика этой схемы значительно лучше, чем у рассмотренной выше.
13.06. Уточненные модели схем по переменному току
Объемное («распределенное») сопротивление базы. Стоит отметить, что модели, которыми мы пользовались, в некотором смысле упрощены, в них не учитываются некоторые важные эффекты, как, например, конечное сопротивление базы r'Б. Для высокочастотных транзисторов указывается параметр r'БСкб — постоянная времени коллектор-база. Для 2N5179 она равна 3,5 пс (ном.), эта величина определяется объемным сопротивлением базы, равным приблизительно 7 Ом. При анализе характеристик на очень высоких частотах такие эффекты необходимо включать в расчет; в этом примере они отсутствуют
Расщепление полюсов. Другим упрощением в предыдущих рассуждениях было допущение, что каждое RС-звено вызывает спад усиления независимо от других. То, что здесь должно быть некоторое взаимодействие, легко видеть по следующим соображениям: эффект Миллера сам по себе является формой высокочастотной отрицательной обратной связи. Поскольку он определяется выходным напряжением, то он должен снижать полное сопротивление выходной цепи транзисторного каскада, в особенности на высоких частотах, где его «петлевое усиление» велико (конечно, при этом он вызывает уменьшение усиления по напряжению, которое является проблемой в целом). В результате уменьшение сопротивления цепи коллектора сдвигает спад, связанный с RнСн, в область более высоких частот, поскольку выходное сопротивление цепи коллектора параллельно Rн. Таким образом, снижение сопрягающей частоты, связанной с эффектом Миллера (за счет возрастания KU или Скб), вызывает подъем сопрягающей частоты, связанной с емкостью коллектора и нагрузки. Это явление известно как «расщепление полюса».
13.07.Последовательно-параллельные пары
В широкополосных усилителях с низким коэффициентом усиления распространены схемы на последовательно-параллельных парах транзисторов (рис. 13.13).
Рис. 13.13. Последовательно-параллельные пары.
Идея заключается в создании усилителей с низким коэффициентом усиления (возможно, около 10 дБ) и с плоской характеристикой в широкой области частот. В этих схемах удачно применяется отрицательная обратная связь для расширения полосы пропускания. Однако отрицательная обратная связь сама по себе может быть источником неприятностей на высоких частотах из-за неконтролируемого сдвига фазы, если петлевое усиление в контуре будет велико. В последовательно-параллельных парах эти трудности преодолеваются за счет введения нескольких контуров обратной связи, в каждом из которых петлевое усиление невелико.
В схеме рис. 13.13 оба каскада, T1 и Т2, работают как усилители с низким коэффициентом усиления по напряжению, так как их эмиттерные резисторы не зашунтированы. R6 обеспечивает обратную связь, охватывающую только T1, так как T2 работает как повторитель в этой цепи. Благодаря тому, что полное усиление по напряжению для каскада на T1 определяется отношением (R6/R1), R4 может подбираться в соответствии с необходимым усилением (R4/R5) незамкнутого контура Т2. И наконец, обратная связь к эмиттеру Т1 добавляется для уменьшения усиления до его расчетной величины.
Последовательно-параллельные пары удобны для блочного построения усилителей, так как они чрезвычайно стабильны и просты по конструкции. С их использованием легко строить усилители с шириной полосы до 300 МГц или более. Коэффициент усиления на одну пару составляет обычно от 10 до 20 дБ, а при необходимости получить большее усиление ставят несколько каскадов.
В разд. 13.11 будут обсуждаться вопросы построения резонансных узкополосных усилителей в противоположность широкополосным устройствам, о которых мы говорили до сих пор. Поскольку усиливаемые сигналы часто имеют узкую полосу частот, при работе в радиодиапазоне очень полезны также резонансные усилители.