Чтение онлайн

на главную

Жанры

Искусство схемотехники. Том 3 (Изд.4-е)
Шрифт:

Рис. 15.37. Фазовый детектор для линейных входных сигналов. Эта принципиальная схема использована в микросхеме AD630.

Выход фазового детектора. Для того чтобы проанализировать работу фазового детектора, допустим, что на вход подается сигнал Есcos (t + ) и соответствующий ему опорный сигнал представляет собой прямоугольное колебание. В тех точках,

где функция sint проходит через нуль, происходит изменение полярности прямоугольного колебания, т. е. в точках t = 0, /, 2/ и т. д. Предположим далее, что мы усредняем выходной сигнал Uвых, пропуская его через фильтр низких частот, постоянная времени которого превышает величину одного периода = RC >> Т = 2/. Тогда выход фильтра низких частот описывается следующим выражением:

где скобки 

использованы для представления среднего значения, а знак «минус» объясняется тем, что в двух половинах периода сигнала Uоп коэффициент усиления имеет противоположные знаки. В качестве упражнения можете показать, что

 Упражнение 15.2. Получите выражение для коэффициента усиления, равного единице. Для нахождения средних значений выполните интегрирование.

Полученный результат позволяет сделать следующий вывод: для входного сигнала, имеющего такую же частоту, что и опорный сигнал, усредненный выходной сигнал пропорционален амплитуде Еси синусу относительного сдвига фазы.

Прежде чем идти дальше, нам нужно получить еще один результат: каким будет выходное напряжение в случае, когда частота входного сигнала близка (но не равна) частоте опорного сигнала? Ответить на этот вопрос нетрудно, используя предыдущие выражения и приняв, что теперь величина есть медленно меняющаяся переменная. При частоте, слегка отличающейся от опорной (на ), имеем

cos( + )t = cos(t + ),  = t.

Теперь выходной сигнал представляет собой медленно меняющуюся синусоиду:

Uвых = (2Ec/)sin()t

которая проходит через фильтр НЧ почти без изменений при условии, что  < 1/ = 1/RC, и значительно ослабляется при условии, что < 1/.

Метод захвата. Теперь для увеличения чувствительности введем так называемый усилитель захвата (фазочувствительный усилитель). Сначала искусственно создадим слабый периодический сигнал, как обсуждалось выше, взяв его частоту вблизи 100 Гц. Этот слабый сигнал, засоренный шумами, усилим и продетектируем по фазе относительно сигнала модуляции.

Рассмотрим рис. 15.38.

Рис. 15.38. Обнаружение путем захвата.

Будем проводить опыт при «двойном управлении» сигналом: во-первых, должна быть быстрая модуляция, которая нужна для фазового детектирования, и, во-вторых,

медленная развертка по интересующим нас параметрам сигнала (при ядерном магнитному резонансе, например, для быстрой модуляции можно использовать модуляцию магнитного поля небольшим сигналом с частотой 100 Гц, а для медленной — использовать 10-минутную развертку, охватывающую все резонансы). Фазосдвигающая цепь отрегулирована так, чтобы выходной сигнал был максимальным, а постоянная времени фильтра низких частот имеет достаточно большое значение, которое выбирается с учетом отношения сигнал/шум. Спад характеристики фильтра низких частот определяет ширину полосы пропускания, например если сопрягающая частота равна 1 Гц, то схема будет пропускать посторонние сигналы и шум, частота которых лежит в пределе 1 Гц относительно частоты исследуемого сигнала (100 ±1 Гц). Ширина полосы пропускания ограничивает также скорость медленной модуляции, так как нет смысла устанавливать для развертки более короткое время, чем время отклика фильтра. Обычно величина постоянной времени лежит в пределах от долей секунды до десятков секунд, и часто для медленной модуляции используют часовой механизм, которым управляют с помощью выведенной куда-нибудь ручки.

Обратите внимание, что обнаружение путем захвата фазы сводится к сужению полосы пропускания, причем ширину полосы пропускания устанавливает оконечный фильтр НЧ. Как и в случае с усреднением сигнала, эффект модуляции заключается в центрировании сигнала на частоте быстрой модуляции, а не на частоте постоянного тока, при этом удается устранить шумы с фактором 1/f (фликкер-шум, дрейф, дребезг и т. п.).

Два метода быстрой модуляции. Существуют два способа быстрой модуляции: в качестве модулирующего колебания можно использовать очень слабое синусоидальное колебание или очень сильное, по сравнению с искомым сигналом, прямоугольное колебание; их иллюстрирует рис. 15.39.

Рис. 15.39. Методы модуляции при захвате, а — малый синусоидальный сигнал модуляции; б — большой прямоугольный сигнал модуляции.

В первом случае выходной сигнал фазового детектора пропорционален наклону сигнала (т. е. его производной), а во втором случае — сигналу (при условии, что нет других спектральных линий, связанных с модулирующим колебанием). По этой причине все эти простые резонансные кривые, наблюдаемые при ядерном магнитном резонансе, выглядят как дисперсионные кривые (рис. 15.40).

Рис. 15.40. Дифференцирование сигнала при обнаружении путем захвата.

При модуляции прямоугольным колебанием с большим фазовым сдвигом существует хороший метод подавления сигнала прямого прохождения, применяемый в тех случаях, когда это явление создает трудности в работе. На рис. 15.41 показано модулирующее колебание. Сдвиги выше и ниже центрального значения уничтожают сигнал и создают модуляцию типа «включен/выключен» на удвоенной частоте по отношению к основной несущей. Этот метод предназначен для специальных случаев и не следует прибегать к нему ради красоты.

Рис. 15.41. Схема модуляции для подавления сигнала прямого прохождения.

Модуляцию с прямоугольными колебаниями большой амплитуды очень часто используют в инфракрасной астрономии, где для переключения изображения инфракрасного источника приводят в движение вторичные зеркала телескопа. Этот метод популярен также в радиоастрономии и известен здесь под названием переключений Дикке.

Поделиться:
Популярные книги

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7

Пенсия для морского дьявола 4

Чиркунов Игорь
4. Первый в касте бездны
Фантастика:
попаданцы
5.40
рейтинг книги
Пенсия для морского дьявола 4

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Совершенный: пробуждение

Vector
1. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: пробуждение

Новая мама в семье драконов

Смертная Елена
2. В доме драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Новая мама в семье драконов

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4

Господин следователь. Книга 2

Шалашов Евгений Васильевич
2. Господин следователь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Господин следователь. Книга 2

Провинциал. Книга 4

Лопарев Игорь Викторович
4. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 4

Сбой Системы Мимик! Академия

Северный Лис
2. Сбой Системы!
Фантастика:
боевая фантастика
юмористическая фантастика
5.71
рейтинг книги
Сбой Системы Мимик! Академия

Кодекс Охотника. Книга ХХ

Винокуров Юрий
20. Кодекс Охотника
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга ХХ

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Вторая жизнь майора. Цикл

Сухинин Владимир Александрович
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Вторая жизнь майора. Цикл