Искусство схемотехники. Том 3 (Изд.4-е)
Шрифт:
Комплексные числа, так же как и действительные, можно складывать, вычитать, умножать:
(а + bi) + (с + di) = (а + с) + (b + d)i;
(а + bi) — (с + di) = (a — c) + (b — d)i;
(а + bi)(c + di) = (ас + bd) + (bc + ad)i;
Все эти действия выполняются просто в том смысле, что i рассматривается как величина, на которую умножена мнимая часть, а все остальные — простая арифметика. Отметим, что i2 = — 1 (это используется в примере с умножением), а операция деления упрощается путем умножения числителя и знаменателя на сопряженное комплексное число,
Если N = а + bi, то N* = а — bi.
Модуль комплексного числа равен
|N| = |а + bi| = [(а + bi)(a — bi)]1/2 = (а2 + Ь2)1/2, т. е. |N| = (NN*)1/2.
Для того чтобы определить модуль комплексного числа, нужно умножить это число на сопряженное и взять квадратный корень от произведения. Модуль произведения (или частного) двух комплексных чисел представляет собой просто произведение (или частное) их модулей.
Для действительной и мнимой частей комплексного числа иногда используется следующая запись:
действительная часть N = Re(N),
мнимая часть N = Im(N).
Для того чтобы получить действительную или мнимую часть, нужно записать число в виде а + bi и взять а или b. При этом может потребоваться выполнить умножение или деление, так как комплексное число может быть весьма запутанным.
Для представления комплексных чисел иногда используют комплексную плоскость. Она представляет собой такую же плоскость, как и плоскость с координатами х, у. При изображении комплексного числа действительная часть берется как координата х, а мнимая — как у, т. е. на этой плоскости используются оси ДЕЙСТВИТЕЛЬНАЯ (х) и МНИМАЯ (у), как показано на рис. Б.1.
Рис. Б.1.
Используя эту аналогию, иногда комплексные числа записывают с помощью координат х, у:
а + bi <-> (a, b).
Как и обычные точки с координатами х, у, комплексные числа можно представлять в полярных координатах; это представление называют тригонометрическим. Например, число а + bi можно записать и так (рис. Б.2):
a + bi = (R, ),
где R = (а2 + b2)1/2 и = arctg(b/a).
Если учесть, что
eix= cosx + isinx
(это
N = a + bi = Rei,
R = |N| = (NN*)1/2 = (а2 + b2)1/2,
= arctg(b/a),
т. е. модуль комплексного числа R и угол — это просто полярные координаты точки, представляющей число на комплексной плоскости. Показательная (или полярная) форма представления удобна для выполнения операций умножения (или деления) комплексных чисел - модули чисел перемножаются (делятся), а углы — аргументы складываются (вычитаются):
(aeib)(ceid) = ace i(b+d).
Рис. Б.2.
И наконец, для того чтобы перейти от представления в полярных координатах к представлению в прямоугольных координатах, следует просто воспользоваться формулой Эйлера:
aeib = acosb + iasinb,
т. е. Re(aeib) = acosb, Im(aeib) = asinb.
Для того чтобы умножить комплексное число на экспоненциальную функцию, необходимо просто выполнить соответствующие операции умножения:
N = a + bi,
Nix= (а + bi) (cosх + isinх) = (acosx — bsinx) + i(bcosx + asinx).
Дифференциальное исчисление
Начнем с понятия функции f(x), т. е. формулы, которая для каждого значения х позволяет найти значение у = f(x). Функция f(х) является однозначной, если каждому значению х она ставит в соответствие единственное значение у. Понятие функции у = f(x) иллюстрирует график, представленный на рис. Б.З.