Истина в пределе. Анализ бесконечно малых
Шрифт:
Пять лет спустя мы услышим аналогичные упреки в адрес Ньютона. В письме, датированном 15 августа 1696 года, Иоганн Бернулли писал Лейбницу: «Не знаю, изобрел ли Ньютон свой метод после того, как увидел ваше исчисление, особенно когда вижу, чем вы поделились с ним до того, как он опубликовал свой метод». В этом письме впервые допускается возможность того, что Ньютон заимствовал результаты Лейбница.
«Скромность есть добродетель, но излишняя робость есть недостаток»
С 1691 года Ньютону все чаще советовали опубликовать свои работы. Наиболее настойчивым был Джон Валлис; он особенно настаивал на публикации Epistolae prior и Epistolae posterior.
В 1695 году он известил Ньютона о том, какое признание получил Лейбниц за открытие своего метода исчисления: «От ваших
Эта публикация изменила положение дел в споре за первенство: Валлис, пусть и не совсем точно, продемонстрировал, какими результатами располагали Ньютон и Лейбниц в 1676 году. Важнее всего было то, что впервые были преданы гласности документы, доказывающие, что Лейбниц опубликовал свою версию раньше, но Ньютон совершил открытие первым, сообщив об этом, пусть и неявно, Лейбницу по его просьбе. Летом 1699 года Лейбниц пишет: «Валлис попросил у меня разрешения на публикацию моих старых писем. <… > Поскольку мне нечего опасаться… я подтвердил, что он может публиковать все, что посчитает нужным». Очень скоро оказалось, что Лейбниц напрасно считал, что ему «нечего опасаться».
«По когтям узнают льва»
В тот же период произошел инцидент, который в высшей степени способствовал обострению дискуссии. Речь идет о знаменитой задаче о брахистохроне, предложенной Иоганном Бернулли в июне 1696 года. В ней требовалось найти кривую, двигаясь по которой исключительно под действием силы тяжести, тело пройдет путь из точки A в точку B за наименьшее время. В мае 1697 года Лейбниц опубликовал присланные ему решения задачи. Всего было получено четыре решения, авторами которых были сам Лейбниц, маркиз Лопиталь, Якоб Бернулли и автор задачи, Иоганн Бернулли. Также было прислано решение неизвестного автора, которое было впервые опубликовано в январе 1967 года в журнале «Философские записки». Как мы знаем, этим неизвестным автором был Ньютон. Увидев простое решение этой задачи, содержавшее всего 77 слов, Иоганн Бернулли угадал автора. Он сказал: «Tanquam ex ungue leonem» — «По когтям узнают льва». Во всех решениях, за исключением предложенного Лопиталем, искомой кривой являлась циклоида.
Продолжение истории, о котором мы расскажем далее, зафиксировано в воспоминаниях племянницы Ньютона и в переписке Иоганна Бернулли и Лейбница. Возможно, целью задачи, предложенной Иоганном Бернулли, было подтвердить возможности ньютоновского анализа бесконечно малых. В письме Иоганну Бернулли, датированном февралем 1697 года, Лейбниц писал, что только он сам, братья Бернулли, маркиз Лопиталь и Ньютон были способны решить эту задачу, так как в то время только им был известен анализ бесконечно малых, необходимый для ее решения. Именно по этой причине, как объяснял Лейбниц, эту задачу в свое время не смог решить Галилей: ему был неизвестен математический анализ.
Таким образом, неизвестным автором решения был не кто иной, как Ньютон, который в то время занимал должность смотрителя Монетного двора и не отошел от научной деятельности. Ньютон получил письмо с задаче о брахистохроне 29 января 1697 года. По рассказам его племянницы, письмо попало в руки Ньютона в четыре часа дня, когда тот усталый вернулся из Монетного двора — в то время
Спустя 12 часов, то есть в четыре часа утра, решение было готово. Племянница Ньютона не знала, что он вполне мог отыскать решение в глубине своей памяти и вспомнить, что искомой кривой является циклоида. Как пишет Уайтсайд, Ньютон должен был заметить, что задача схожа с задачей о поиске тела вращения, обладающего наименьшим сопротивлением течению однородного потока. Эту задачу он решил более десяти лет назад, когда работал над «Началами».
Но история на этом не заканчивается. Когда Лейбниц представлял полученные решения задачи о брахистохроне, он упомянул, что заранее знал, кому удастся найти решение: «Разумеется, не будет недостойным указать, что задачу удалось решить только тем, на кого я указал наперед. В действительности это те, кто достаточно глубоко проник в тайны нашего дифференциального исчисления. Так, наряду с братом автора [задачи] и маркизом Лопиталем из Франции я упомянул… господина Ньютона». Лейбниц не включил в список Фатио де Дюилье, и, кроме того, из его фразы можно было сделать вывод, что Ньютон является его учеником.
Фатио атакует, Лейбниц контратакует
Фатио не смог стерпеть подобной ремарки. Он подготовил ответ и опубликовал его в Лондоне в 1699 году. В нем говорится: «Достопочтенный господин Лейбниц, быть может, задастся вопросом, от кого он узнал об использованном им исчислении. Во всех отношениях его общие принципы и большинство его правил открыл я сам, начиная с апреля 1687 года и в течение последующих лет. В то время я думал, что никто, кроме меня, не использовал это исчисление. Господин Лейбниц не был бы менее неизвестен мне, если бы его вообще не существовало. Он может похвастаться многими учениками, но я не вхожу в их число. Это станет известно, если будут опубликованы письма, которыми я обменивался с достопочтенным господином Гюйгенсом. Однако факты таковы, что первым это исчисление открыл Ньютон много лет назад. Лейбниц, второй, кто открыл исчисление, мог заимствовать что-либо у Ньютона, но это я оставляю на суд тех, кто видел письма господина Ньютона и его рукописи. Ни скромнейшее молчание Ньютона, ни неизменное тщеславие Лейбница, который при каждом удобном случае приписывает себе авторство этого исчисления, не обманут никого, кто изучит доступные материалы подобно тому, как это сделал я».
Возможно, дело еще более омрачила дружба Фатио и Ньютона. Лейбниц мог посчитать, что Ньютон убедил Фатио обвинить его в плагиате, хотя Фатио вполне мог действовать самостоятельно, желая понравиться Ньютону.
Несмотря на прямое обвинение в плагиате, скандал не спешил разгораться. Лейбниц опубликовал ответ в журнале Acta eruditorum и отметил, что обвинения Фатио могли быть продиктованы кем-то другим: «Прошу простить меня, если не отвечу на все ваши утверждения, пока вы не докажете, что не действуете по чьему-либо указанию, и в особенности по указанию Ньютона, с которым я никогда не враждовал». Лейбниц настаивал на том, что методы анализа были открыты им независимо: «Что же до меня, то я при каждом удобном случае заявлял о его [Ньютона] значительных заслугах, и это известно ему, как никому другому. Он также объявил об этом публично, когда в 1687 году в своих «Началах» опубликовал некоторые свои геометрические открытия, которые совершили мы оба. При этом никто из нас не приписывал себе заслуг другого, но объяснял открытия лишь результатом собственных измышлений, которые я изложил десять лет назад».
Решение Ньютона включить в «Оптику» (этот труд был опубликован в 1704 году) два приложения, в особенности то из них, что было посвящено задаче о квадратуре, несомненно, было продиктовано желанием прояснить ситуацию, создавшуюся после обвинений, выдвинутых Фатио. Причиной также были неоспоримые успехи Лейбница в области анализа: благодаря ему и его ученикам, Якобу и Иоганну Бернулли, а также маркизу Лопиталю, математический анализ в последнее десятилетие XVII века превратился в мощное средство, доступное любому желающему изучить его. Как писал Альфред Руперт Холл, автор самого полного исследования, посвященного полемике Ньютона и Лейбница, «наиболее существенные разногласия между ними были связаны с оценкой математического анализа: был ли он всего лишь логичным продолжением уже известных методов анализа или чем-то особенным, радикально отличавшимся от всего, что было известно до этого. Ньютон не считал математический анализ чем-то особенным, хотя, разумеется, осознавал значимость своих открытий. Можно с уверенностью сказать, что не последнюю роль в этом сыграли успех Лейбница и его последующая слава. Лейбниц считал математический анализ гигантским шагом вперед, сравнивая его с появлением алгебры; с созданием анализа математика изменилась бесповоротно».