Чтение онлайн

на главную

Жанры

Шрифт:

Ясно, что число с(а, b) является интегралом функции плотности z(x) по параллелепипеду P(а, b). На рис. 22 число с(а, b) условно изображается объемом призмы, имеющей в качестве основания параллелепипед P(а, b) и ограниченной сверху графиком функции z. Число с(а, b) можно, при желании, интерпретировать как вероятность того, что случайный «династический вектор», распределенный в пространстве Rk с функцией плотности z, оказался на расстоянии от точки а, не превышающем расстояния между точками а и b, с учетом ошибки h(а). Другими словами, случайный «династический» вектор, распределенный с функцией плотности, попал в окрестность P(а, b)

точки а, имеющую «радиус» а — b + h(а).

Рис. 22. Представление коэффициента с(а, b) в биде объема «примы», то есть интеграла от функции z(x) по параллелепипеду Р(а, b).

Из предыдущего видно, что роль династий а и b при подсчете коэффициента с(а, b) неодинакова. Династия а была помещена в центр параллелепипеда P(а, b), а династия b определяла его диагональ. Конечно, можно было «уравнять в правах» династии а и b, поступив по аналогии с предыдущим коэффициентом p(X, Y). То есть можно поменять клестами династии а и b, вычислить коэффициент с(b, а), а затем взять среднее арифметическое чисел с(а, b) и с(b, а). Мы этого не делали по двум причинам. Во-первых, показали конкретные эксперименты, замена коэффициента с(а, b) на его «симметризацию» фактически не меняет получающихся результатов. Во-вторых, в некоторых случаях династии a и b действительно могут быть неравноправными в том смысле, что одна из них может быть оригиналом, а вторая — всего лишь ее дубликатом, фантомным отражением. В этом случае естественно помещать в центр параллелепипеда династию а, претендующую на роль оригинала, а «фантомное отражение» b рассматривать как «возмущение» династии а. Возникающие различия между коэффициентами с(а, b) и с(b, а) хотя и невелики, но могут послужить полезным материалом для дальнейших, более тонких исследований, которых мы пока не проводили.

2.3. Уточнение модели и вычислительный эксперимент

Сформулированный выше принцип малых искажений проверялся на основе коэффициента с(а, b).

1) Для проверки были использованы хронологические таблицы Ж. Блера [76], содержащие практически все основные хронологические данные, в скалигеровской версии, из истории Европы, Средиземноморья, Ближнего Востока, Египта, Азии от якобы 4000 года до н. э. до 1800 года н. э. Эти данные были затем дополнены списками правителей и их правлений, взятых нами из других источников и монографий, как средневековых, так и современных. Упомянем здесь, например, следующие книги: Ш. Бемон, Г. Моно [64], Э. Бикерман [72], Г. Бругш [99], А.А. Васильев [120], Ф. Грегоровиус [195], [196], Д. Эссад [240], Ш. Диль [247], Кольрауш [415], С.Г. Лозинский [492], Б. Низе [579], В.С. Сергеев [766], [767], Chronologie egipticnnc [1069], F.K. Ginzel [1155], LIdeler [1205], L’art de verifier les dates faites historiques [1236], T. Mommsen [1275], Isaac Newton [1298], D. Petavius [1337], I. Scaliger [1387].

2) Как мы уже отмечали, под династией мы понимаем последовательность фактических правителей страны, безотносительно к их титулатуре и родственным связям. В дальнейшем мы иногда будем, для краткости, условно называть их царями.

3) Из-за наличия соправителей иногда возникают трудности при расположении царей в ряд. Мы приняли простейший принцип упорядочения — по серединам правлений.

4) Последовательность чисел, выражающих длительности правлений всех правителей на протяжении всей истории данного государства (то есть длина последовательности априори не ограничивается), будем называть ДИНАСТИЧЕСКИМ ПОТОКОМ. Подпоследовательности, получающиеся отбрасыванием тех или иных СОПРАВИТЕЛЕЙ, назовем ДИНАСТИЧЕСКИМИ СТРУЯМИ. От каждой такой струи требуется, чтобы она была МОНОТОННОЙ, то есть, чтобы середины периодов правлений монотонно возрастали. Требуется также, чтобы династическая струя была ПОЛНОЙ, то есть, чтобы она без пропусков и разрывов покрывала весь исторический период, охваченный данным потоком. Перекрытия периодов правлений при этом допускаются.

5) В реальных ситуациях по понятным причинам перечисленные выше требования могут быть несколько нарушены. Например, из рассказа летописца может выпасть год или несколько лет междуцарствия. Поэтому приходится разрешать незначительные ПРОБЕЛЫ. Мы допускали лишь такие пробелы, длительность которых не превышает одного года. Кроме того,

при анализе династических потоков и струй приходится постоянно иметь в виду возможность искажения подлинной картины в результате описанных выше ошибок (1), (2), (3), допускаемых летописцами.

6) Имеется еще одна причина нарушения четкой формальной картины. Она заключается в том, что иногда трудно с определенностью установить время начала правления царя. Например, считать ли его от момента фактического прихода к власти или от момента формальной интронизации. Для начала правления Фридриха II, например, в разных источниках приводятся различные варианты: 1196, 1212, 1215, 1220 годы. В то же время с концом правления обычно никаких трудностей нет. Чаще всего это смерть царя. Таким образом, мы приходим к необходимости «раздвоения» царя или даже к рассмотрению его в трех вариантах. Большее число вариантов на практике, к счастью, появлялось исключительно редко. Все эти варианты включались в общий династический поток. При этом требовалось, чтобы ни одна из выделяемых в дальнейшем для исследования династических струй не содержала двух различных вариантов одного и того же правления царя.

7) Для всех государств из указанных выше географических регионов был составлен, на основе собранных нами хронологических данных в скалигеровской версии, полный список О всех летописных династий длины 15. То есть был составлен список всех династий из 15 последовательных царей. Каждый царь может при этом попасть в несколько 15-членных династий, то есть династии могут «перекрываться». Перечислим основные династические потоки, подвергнутые статистическому анализу. Это епископы и папы в Риме, патриархи Византии, сарацины, первосвященники в Иудее, греко-бактрийцы, экзархи в Равенне, фараонские династии Египта, средневековые династии Египта, династии Византии, Римской империи, Испании, России, Франции, Италии, Османской = Оттоманской империи, Шотландии, Лакедемона, Германии, Швеции, Дании, Израиля, Иудеи, Вавилона, Сирии, Португалии, Парфии, Боспорского царства, Македонии, Польши, Англии.

8) После применения к списку D летописных династий возмущений типов (1) и (2), см. выше, оказалось, что получается примерно 15 x 1011 виртуальных династий. То есть в множестве vir(D) оказывается примерно 15 x 1011 точек.

2.4. Результат эксперимента: коэффициент с(а, b) хорошо различает зависимые и независимые династии

Вычислительный эксперимент, проведенный в 1977–1979 годах мною совместно с М. Замалетдиновым и П. Пучковым, подтвердил принцип малых искажений. А именно оказалось, что для заведомо зависимых летописных династий а и b число ВССД = с(а, b) всегда не превышает 10– 8 и обычно колеблется от 10– 12 до 10– 10. При вероятностной интерпретации это означает, что если рассматривать наблюдаемую близость двух зависимых летописных династий как случайное событие, то его вероятность мала, событие исключительно редкое, поскольку реализуется единственный из 100 миллиардов шанс.

Выяснилось далее, что если две летописные династии а и b изображают две заведомо разные реальные династии, то коэффициент ВССД = с(а, b) «существенно больше». А именно, он всегда не меньше, чем 10– 3, то есть «велик». Как и в случае с коэффициентом p(X, Y), здесь важны, конечно, не абсолютные значения ВССД = с(а, b), а разница в несколько порядков между «зависимой зоной» и «независимой зоной», рис. 23.

Рис. 23. Коэффициент с(а, b) позволяет различать зависимые и независимые пары династий.

Итак, при помощи коэффициента ВССД удалось обнаружить существенное различие между заведомо зависимыми и заведомо независимыми летописными династиями.

2.5. Метод датирования древних династий и метод обнаружения фантомных династических дубликатов

Итак, при помощи коэффициента с(а, b) можно достаточно уверенно различать зависимые и независимые пары летописных династий. Важный экспериментальный факт состоит в том, что летописцы ошибаются «не слишком сильно». Во всяком случае, их ошибки существенно меньше величины, различающей независимые династии.

Поделиться:
Популярные книги

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Лорд Системы 11

Токсик Саша
11. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 11

Мимик нового Мира 7

Северный Лис
6. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 7

Папина дочка

Рам Янка
4. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Папина дочка

Расческа для лысого

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
8.52
рейтинг книги
Расческа для лысого

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Кодекс Охотника. Книга III

Винокуров Юрий
3. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Кодекс Охотника. Книга III

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Ярость Богов

Михайлов Дем Алексеевич
3. Мир Вальдиры
Фантастика:
фэнтези
рпг
9.48
рейтинг книги
Ярость Богов

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Релокант. По следам Ушедшего

Ascold Flow
3. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. По следам Ушедшего

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Морозная гряда. Первый пояс

Игнатов Михаил Павлович
3. Путь
Фантастика:
фэнтези
7.91
рейтинг книги
Морозная гряда. Первый пояс

На границе тучи ходят хмуро...

Кулаков Алексей Иванович
1. Александр Агренев
Фантастика:
альтернативная история
9.28
рейтинг книги
На границе тучи ходят хмуро...