История электротехники
Шрифт:
Одновременно подобная система изоляции создавалась с помощью ВНИИЭИМ на харьковском заводе «Электротяжмаш» (А.В. Хвальков-ский, Р.С. Холодовская, В.Б. Бунер). В эти же годы термореактивная изоляция с использованием принципа вакуум-нагнетательной пропитки сухих лент («монолит») была разработана во ВНИИЭИМ (Н.В. Александров, С.Г. Трубачев, В.Г. Огоньков) и успешно внедрена на крупнейших электромашиностроительных заводах: «Уралэлектротяжмаш», «Сибэлектротяжмаш», Лысьвенский турбогенераторный завод.
В 1968 г. на первых гидрогенераторах с термореактивной изоляцией было обнаружено явление электроэрозионного повреждения изоляции (пазовый разряд), характерное для твердой термореактивной изоляции в сочетании с традиционной конструкцией пазового крепления. За короткий
В 1970–1979 гг. на заводе «Электросила» Б.Д. Ваксером, З.М. Гуревичем, Т.Ю. Баженовой, Ю.Л. Пресновым были выполнены фундаментальные исследования долговечности и надежности термореактивной изоляции на лабораторных установках: 1) испытания на электрическое старение, механические воздействия и вибрацию; 2) функциональные испытания, совмещающие воздействие электрического поля и термомеханические напряжения; 3) исследования систем пазового крепления.
Результаты этих исследований позволили значительно снизить толщину изоляции статорных обмоток, что чрезвычайно важно для улучшения технико-экономических показателей Турбо- и гидрогенераторов. При этом повысились качество и надежность машин в эксплуатации, была обеспечена стабильность изоляции в производстве путем внедрения новых чувствительных методов контроля, использующих ионизационные явления.
В середине 70-х годов потребовалось повышение напряжения турбогенераторов мощностью 800–1200 МВт до 24 кВ и исключение коронирования обмотки. Для этого на заводе «Электросила» было создано эффективное и надежное короногасящее покрытие на основе эмали с наполнителями, имеющими нелинейные вольт-амперные характеристики. Разработанные модификации конструкции такого покрытия и методы контроля эмали, обеспечивающие его стабильность, а также простоту производства, позволили использовать его во всем существующем диапазоне классов напряжений высоковольтных электрических машин.
С конца 70-х годов начались работы по совершенствованию термореактивной изоляции «слюдотерм». Она основывалась на изготовлении катушек, пропитываемых и запекаемых до укладки обмотки в электрическую машину. Ее преимущество состояло в том, что эта конструкция и технология не ограничивали габариты электрических машин, обеспечивали ремонтопригодность обмоток, т.е. замену секций, стержней, катушек в случае пробоя, после длительного срока эксплуатации и т.п. Такая изоляция была применена в машинах с диаметром сердечника статора более 1–1,5 м. По существу, было создано новое поколение изоляции. Изменение состава связующего позволило при сохранении и некотором упрощении технологии повысить плотность слюдяного барьера в изоляции, существенно улучшить ее механические и электрические характеристики. Проведенные всесторонние испытания, в том числе с использованием пазовой модели, показали, что модернизация термореактивной изоляции позволяет снизить толщину изоляции на 25–40% при сохранении ее надежности и долговечности. Это обеспечило возможность создания современных мощных турбогенераторов с воздушным охлаждением, а также конкурентоспособных гидрогенераторов. Эти работы по изоляции были выполнены на заводе «Электросила» под руководством Ю.Л. Преснова (до 1979 г.), а затем В.В. Петрова.
Для электрических машин с диаметром сердечника статора до 1–1,5 м была применена система изоляции «монолит», при которой статор с уложенными сухими обмотками проходил вакуумно-нагнетательную пропитку в специальном котле, а в дальнейшем термообработку в печах. Система «монолит» позволила повысить электрическую и механическую прочность изоляции при одновременном снижении ее толщины и повышении
В настоящее время практически все высоковольтные электрические машины выпускаются с термореактивной изоляцией, что обеспечивает высокий уровень надежности обмоток.
В заключение необходимо рассмотреть вопросы изоляции низковольтных электрических машин. До 1965 г. на заводе «Электросила» для низковольтных электрических машин переменного тока напряжением до 1200 В применялись две системы изоляции: 1) микалентная битумно-масляная для рабочих температур до 130 °С; 2) стекломикалентная на основе кремнийорганических связующих для рабочих температур до 180 °С. Последняя была создана на основе работ К.А. Андрианова по химии кремнийорганических материалов. Начиная с 1965 г., под руководством Е.П. Богдановой была разработана система изоляции на основе слюдопластовой бумаги производства Ленинградской слюдяной фабрики и эпоксидно-фенольных связующих класса нагревостойкости F.
С 1969 г. проводились разработки и внедрение полиимидной пленки и композиций на ее основе. Переход на пленочные материалы позволил снизить толщину изоляции примерно на 40%, соответственно повысились технические параметры электрической машины (коэффициент заполнения паза, удельная мощность). По техническим заданиям специалистов завода «Электросила» сотрудниками Всесоюзного научно-исследовательского института кабельной промышленности (ВНИИКП, г. Москва) был разработан провод с полиимидно-фторопластовой изоляцией с двусторонней толщиной 0,16 мм (выпускает завод «Москабель»). Уже в сериях машин постоянного тока П и 2П якорная обмотка выполнялась с использованием пленочных материалов.
Создание современной низковольтной изоляции проходило под руководством и при непосредственном участии Ю.Л. Преснова, В.В. Петрова и И.Т. Сушковой.
6.2.14. МЕТАЛЛОВЕДЕНИЕ ВТ КРУПНОМ ЭЛЕКТРОМАШИНОСТРОЕНИИ
Наряду с изоляцией очень важными элементами электрических машин являются металлы и сплавы. Основные исследования и разработки в области металловедения для крупного электромашиностроения проводятся в отделе металлов завода «Электросила». Главным исполнителем этих работ является Н.А. Греков. В результате творческого труда инженеров-металлургов как электротехнической, так и металлургической промышленности удалось создать стальные заготовки крупных размеров, набор специальных электротехнических и конструкционных металлов и сплавов, многие марки чистой электротехнической проводниковой меди и ее сплавов, разработать новые технологические процессы и способы контроля.
Производство заготовок роторных валов, несомненно, является важнейшей задачей при создании турбогенераторов. Ротор турбогенератора — это, пожалуй, самая крупная во всем машиностроении цельная металлическая деталь. Его масса изменяется от нескольких тонн (1,5–6) для небольших турбогенераторов мощностью 2–12 МВт до 200 т в чистой заготовке для тихоходного (1500 об/мин) турбогенератора мощностью 1000 МВт для атомных электростанций. Проблема изготовления роторов в нашей стране была удачно разрешена в самом начале производства генераторов, так как металлургическое производство других отраслей имело опыт изготовления требуемых слитков высококачественных сталей и их ковки в крупные заготовки, какими являются роторные валы.