История электротехники
Шрифт:
Электронные пушки. Электронно-лучевые установки с кольцевыми катодами вначале получили широкое распространение, в частности в США, благодаря простоте конструкции, в которой катод расположен прямо в рабочей камере. Однако из-за невозможности сохранения высокого вакуума при плавке и возникновения электрических пробоев такая конструкция оказалась ненадежной, и поэтому стали разрабатываться конструкции электронных пушек со своей вакуумной системой.
Принципы создания электронной пушки для плавки или сварки были разработаны только в 1940 г. (Дж.Р. Пирц, США).
В СССР в конце 50-х годов работы по ЗЛУ начали вести несколько организаций: кафедра ЭТУ МЭИ (М.Я. Смелянский, Л.Г. Ткачев), ВЭИ (В.И. Переводчиков), ВНИИЭТО (В.А. Хотин), ИЭС им. Е.О. Патона АН УССР (Б.А. Мовчан), Всесоюзный институт легких сплавов — ВИЛС (А.Ф. Белов, И.А. Кононов), Государственный институт редких металлов — Гиредмет, Всесоюзный институт авиационных моторов — ВИАМ и др.
В МЭИ в 1959 г. был создан стенд с пушкой мощностью до 60 кВт, а позднее ЭЛУ мощностью 500 кВт. В 1961 г. по ВНИИЭТО изготовлена первая электронно-лучевая печь-стенд мощностью 200 кВт. Плосколучевые пушки мощностью 20–300 кВт при ускоряющем напряжении 15–20 кВ созданы ИЭС (рис. 7.10). Серию промышленных электронных пушек на мощности 60–500 кВт разработал ВЭИ.
За рубежом подобные пушки применяли фирмы «Гереус» (ФРГ) и «Штауффер темескал» (США). Мощные аксиальные электронные пушки (до 1200 кВт при напряжении 35 кВ) были созданы М. фон Арденне в ГДР.
Испарение и нанесение покрытий. Первый агрегат непрерывного алюминирования стали с использованием ЭЛУ вместо электролитического лужения был построен в США в 1965 г.
Для испарения материала (алюминий, цирконий, сталь, различные сплавы и др.) созданы специальные электронно-лучевые испарители. Промышленный испаритель подобного типа был установлен в ГДР в 1971 г. на основе разработки М. фон Арденне. На стальную ленту шириной 400 мм наносилось двустороннее покрытие алюминием толщиной 2 мкм на сторону при скорости движения ленты до 3 м/с.
Агрегаты такого типа разрабатывала также фирма «Лейбольд — Хереус» (ФРГ): общая мощность электронно-лучевых пушек 1500 кВт, испарителя 1500 кВт, ширина ленты 1000 мм, скорость ее движения до 5 м/с. Фирма «ЮС Стил» (США) изготавливала установки для ленты шириной до 1250 мм при скорости до 7,5 м/с.
В СССР практически одновременно использовались аналогичные агрегаты, разработанные ВНИИ металлургического машиностроения (ВНИИметмаш), СКБ вакуумных покрытий при Госплане Латвийской ССР, ИЭС. В них были использованы пушки аксиального и плосколучевого типа с поворотом луча магнитной системой на 90–270°.
В 1979 г. советскими космонавтами в космических условиях успешно испытана экспериментальная аппаратура «Испаритель» с применением электронно-лучевого нагрева. В перспективе возможно создание металлических покрытий (защитных, отражающих и др.) на конструкциях непосредственно в космическом пространстве, т.е. с использованием космического вакуума.
Плавка
Уже в 60-х годах прорабатывались конструкции ЭЛУ с кольцевым катодом или тремя аксиальными пушками для вертикальной зонной плавки с целью получения монокристаллов тугоплавких металлов. Такие работы проводились в Институте металлургии им. А.А. Байкова АН СССР. В 1967 г. в США эта же технология использовалась для получения монокристаллов кремния.
Важная проблема утилизации отходов титана также была решена с использованием ЭЛУ. Фирма «Эйрко Темескал» (США, 1977 г.) проводила плавку стружки сплава титана в установке с шестью пушками общей мощностью 1200 кВт. Качество полученного слитка оказалось выше, чем при вакуумно-дуговом переплаве.
Японская фирма «Джапан электрон оптике лаб. корп.» в конце 60-х — начале 70-х годов выпускала плавильные ЭЛУ для переплава первичных слитков и сыпучей шихты. Подобные же установки выпускались в нашей стране по разработке ИЭС им. Е.О. Патона и в ГДР по разработке М. фон Арденне.
Для рафинирования стали при разливке электронно-лучевые установки используются с 1963 г., когда в США впервые была продемонстрирована опытная установка. Для холодноподового рафинирования применяют каскады камер с несколькими электронно-лучевыми пушками (до 18), при этом увеличивается обрабатываемая поверхность расплава.
В СССР плавильные электронно-лучевые печи разработанные ВНИИЭТО, стали внедряться в 70-е годы: в 1977 г. осуществлен пуск в промышленную эксплуатацию ЭЛУ емкостью 1 т на Узбекском комбинате тугоплавких и жаропрочных металлов; в 1980 г. на Новосибирском ЗЭТО изготовлена ЭЛУ для получения слитков массой 30 т.
Для получения порошков тугоплавких металлов (с последующим изготовлением деталей горячим прессованием) методом центробежного распыления вращающейся оплавляемой заготовки в 70-х годах начал использоваться электронно-лучевой нагрев (США, ФРГ, СССР).
Термообработка металлов. Электронно-лучевой нагрев позволяет реализовать технологические процессы поверхностной закалки и оплавления поверхности деталей. Для деталей сложной формы и больших габаритов электронно-лучевая закалка, которая стала применяться в 70-х годах, имеет преимущества по сравнению с индукционной закалкой. Оплавление поверхности деталей позволяет улучшить механические характеристики деталей из сталей, чугунов и алюминия.
С 1961 г. фирма «Темескал» (США) эксплуатирует установку с плосколучевой пушкой для рекристаллизационного отжига металлической ленты в вакууме. Подобную установку разработала также фирма «Дегусса» (ФРГ). Изготовленная в ГДР установка для термообработки ленты была оснащена аксиальной пушкой с системой управления перемещением электронного луча.