История электротехники
Шрифт:
Головные блоки мощностью 800 МВт на электростанциях были освоены в СССР к началу 1968 г., а еще через 10 лет — блоки 1000 МВт.
Для того чтобы представить изменение уровня технологии на станциях с блоками 800 МВт, напомним, что номинальный ток статора турбогенератора ТГВ-800 составляет 22,65 кА, а номинальный ток возбуждения — 6720 А. При таких токах канализация, коммутация электроэнергии, управление режимами, контроль за состоянием и автоматика требуют решения совокупности сложнейших технических задач не только при создании соответствующего оборудования, но и при разработке схем выдачи энергии в систему.
Многообразие электрических станций. Закон концентрации производства электроэнергии был бы неполон без отражения всего многообразия видов электростанций. Рост
Тепловые и гидравлические электростанции возникли одновременно. Но если ГЭС развивались в основном в направлении роста мощностей, то ТЭС почти сразу разделились на два подвида, заметно отличающиеся как по схемам электрических соединений, так и по тепловой части: конденсационные (КЭС) и теплоэлектроцентрали (ТЭЦ). Первые предназначены исключительно для выработки электроэнергии, вторые — для комбинированной выработки электроэнергии и теплоты. Экономическая целесообразность последних определяется тем, что при расположении ТЭС в непосредственной близости от потребителей теплоты весьма выгодно одновременно с отпуском потребителям электроэнергии поставлять им и пар для технологических нужд (а таких технологий много) и отопления зданий — теплофикации. В СССР началом теплофикации принято считать 25 декабря 1924 г. — пуск теплопровода от 3-й Ленинградской государственной районной электростанции. Этим было положено начало развитию ТЭЦ.
Следующий шаг в развитии электрификации был сделан через 30 лет. 27 июня 1954 г. в г. Обнинске (Российская Федерация) была пущена в опытную эксплуатацию первая в мире атомная станция (АЭС). Это рассматривалось в те времена как начало новой эры энергетики. И действительно, энергетика вступила на новый, неизведанный путь, и только 30 лет спустя по-настоящему было осознано, насколько сложным и труднопредсказуемым оказался этот путь.
А первые годы были полны исключительно оптимистических публикаций, докладов, монографий. Большое число ученых вплоть до 1986 г. связывали будущее энергетики с АЭС. До конца 60-х годов шли интенсивные поиски приемлемых форм использования энергии ядерного распада, и в этом большую роль сыграла Обнинская АЭС. К концу 60-х годов первый этап поиска рациональных решений по ядерному реактору был закончен и наступил период широкого строительства АЭС на тепловых нейтронах как в СССР, так и за рубежом. Так, к 1986 г. в 38 странах мира было построено 360 АЭС общей мощностью 260 тыс. МВт (для сравнения 267 тыс. МВт — установленная мощность всех электростанций Минэнерго СССР в 1980 г.). Погоня за удешевлением АЭС и недооценка неизученности процессов в ядерных реакторах в СССР привели к крупнейшей катастрофе XX в. — чернобыльской аварии 26 апреля 1986 г.
Несмотря на все ужасные последствия чернобыльской аварии, и в настоящее время полагают, что альтернативы атомной энергетике не существует. Наступает следующий период развития АЭС — разработка АЭС с реакторами нового типа, безопасных и конкурентоспособных с КЭС, а также с реакторами на быстрых нейтронах.
Концентрация производства электроэнергии на мощных агрегатах имеет и свои отрицательные стороны — прежде всего это малая маневренность мощных блоков, особенно на АЭС. К этому фактору добавилось и другое явление — рост неравномерности потребления электроэнергии в течение суток, недели, года. В связи с этим возникла в отдельных случаях острая необходимость создания агрегатов, обладающих высокой скоростью набора нагрузки — высокими маневренными свойствами. Такими в энергосистемах являются агрегаты ГЭС, если в водохранилищах имеется запас воды для снятия больших колебаний нагрузки. Но как раз в большинстве энергосистем таких запасов либо вообще нет, либо их явно недостаточно. Для решения задачи регулирования графика нагрузки в его переменной части появились газотурбинные агрегаты и гидроаккумулирующие электростанции, что расширило спектр энергоагрегатов в современной энергетике.
Рассматривая этапы развития электростанций, нельзя обойти стороной большой объем работ, выполненных как в России, так и за рубежом по внедрению в практическую энергетику МГД (магнитогидродинамического)-преобразования тепловой энергии в электрическую и соответственно
Привлекательность этого направления состоит прежде всего в том, что МГД-преобразование дает возможность, минуя стадию преобразования теплоты в механическую энергию, сразу получать электроэнергию — прямое преобразование теплоты в электричество. К тому же начальные температуры рабочего тела при МГД-преобразовании весьма высоки, откуда возникает надежда на достижение высокого КПД.
Основные схемы энергетических МГД-установок были запатентованы еще в начале века. Углубленное изучение их с проработкой проектов и создание опытных установок начинается в начале 60-х годов в ряде стран: США, СССР, Японии, Китае и др.
Разработано довольно большое количество разных типов МГД-генераторов. Всего в мире было построено около 20 опытных МГД-установок. Наиболее широкие исследования были проведены в СССР.
В 1964 г. в Институте высоких температур АН СССР (МВТ АН СССР) была построена первая в мире комплексная МГД-установка У-02 мощностью 200 кВт. На основе опыта ее работы, а также исследований, проведенных ИВТ, Энергетическим институтом им. Г.М. Кржижановского, Институтом электродинамики АН УССР и др., в 1971 г. была сооружена промышленная электростанция с опытным МГД-генератором мощностью 25 МВт. На основе опыта работы этой станции было принято решение о проектировании МГД-электростанции мощностью 500 МВт.
Однако дальнейшие работы были свернуты как по социально-экономическим условиям в стране, так и по ряду причин технического и технологического характера. Прежде всего ожидания высокого КПД не оправдались: снижение потерь теплоты в громадном канале оказалось технически сложным. Заметными были и потери теплового потенциала вследствие инжекции ионизирующих присадок. Главное, не удалось создать канал — основной элемент МГД-генератора с приемлемым сроком службы: несмотря на все усилия, срок службы канала до выхода из строя оказался не более 1100–1200 ч. Это примерно в 5 раз меньше, чем требуется для промышленной установки.
Поэтому некоторые специалисты считали возможным работу МГД-электростанций в пиковом режиме (для снятия пиковых нагрузок в энергосистеме), т.е. с числом часов работы в году примерно 1000. После года работы канал необходимо было бы демонтировать и ставить новый. Это, конечно, дорого и неудобно в эксплуатации.
Газотурбинные агрегаты, решают проблему снятия пиков нагрузки без указанных затруднений. А получившие в 80–90-х годах на Западе широкое развитие парогазовые установки показали возможность достижения КПД 60% и без МГД-электростанций. Проекту МГД-электростанций 500 МВт не дано было свершиться, хотя дальнейшие работы в этом направлении продолжаются, но не в прежних масштабах.
Вот уже более 40 лет будущее энергетики связывается с управляемым термоядерным синтезом (УТС) и электростанциями, главной частью которых по предполагаемым проектам будут реакторы, в которых протекает управляемая реакция синтеза ядер легких изотопов.
Начало исследований по управляемому термоядерному синтезу имело место в СССР еще до реализации неуправляемого синтеза — испытания водородной бомбы (начало 50-х годов XX столетия). Возглавлял исследования академик Л.А. Арцимович. Исследования по УТС интенсивно вели в то же время и американские ядерщики. Позже к таким исследованиям подключились и физики Западной Европы. Проблема чрезвычайно сложная и, как и в МГД-преобразовании, упирается в необходимость создания высоких плотностей энергии с применением сильных магнитных полей. Удержать же горячую плазму до возникновения реакции чрезвычайно трудно, хотя и можно. Какие воздействия требуются — грубо, но достаточно образно можно представить по взрыву водородной бомбы. Вся история работ по УТС состоит в погоне за повышением параметров плазмы и времени ее удержания.
Предложен довольно широкий набор различных реакторов (в которых возможна реакция синтеза), отличающихся способами создания плазмы, ее нагрева и удержания. Одним из наиболее перспективных реакторов представляется, по современным воззрениям, реактор с тороидальной магнитной камерой — ТОКАМАК, предложенный впервые в СССР в Институте атомной энергии им. И.В. Курчатова и детально разрабатывавшийся под руководством академика Л.А. Арцимовича. Этот тип реактора принят международным сообществом для совместной разработки.