Чтение онлайн

на главную

Жанры

История философии (Энциклопедия)
Шрифт:

ВЕЗДЕСУЩНОСТЬ (лат.
– omnipraesentia) - понятие философской системы Фомы Аквинского, обозначающее феномен присутствия Бога во всех вещах, доступных Его взору, подвластных Ему и черпающих собственную исходность в Его существовании. Именно в божественной В. мистицизм традиционно усматривал силу, наделяющую мир вещей сущностью - субстанцией, дабы они не оставались бы ирреальными.

A.A. Грицанов

ВЕЙЛЬ (Weyl) Герман (1885-1955) - математик и философ, член Национальной Академии Наук США, лауреат Международной премии имени Лобачевского (1927).

ВЕЙЛЬ (Weyl) Герман (1885-1955) - математик и философ, член Национальной Академии Наук США, лауреат Международной премии имени Лобачевского (1927). Образование получил в Геттингенском Университете (1908). Профессор математики Политехнического Института в Цюрихе (Швейцария, 1913-1930), Геттингенского Университета (Германия, 1930-1933), Принстонского Института перспективных исследований (США, с 1933). Главные труды (в философии): "Континуум" (1918), "Пространство. Время. Материя" (1918), "Философия математики и естественных наук" (1922 - издание в Германии; 1934 - издание в СССР под названием "О философии математики" в виде сборника статей с сокращениями; 1949 - издание в США), "Теория групп и квантовая механика" (1928), "Разум и природа" (1934), "Математика и логика" (1946), "Полвека математики" (1951), собрание научных трудов (1968, Берлин, в 4 тт.). Главные направления исследований: алгебраическая теория чисел, теории функций, интегральных и дифференциальных уравнений; проблемы симметрии. Основополагающие результаты достигнуты В. в направлении теории непрерывных групп и их представлений

с приложениями в современной математической физике и геометрии. В. принадлежит основополагающая концепция о классификации физических объектов по свойственным им группам симметрии (1928, независимо от В. эту идею выдвинул Е.Вигнер, получивший за нее Нобелевскую премию по физике (1963), уже после ухода В. из жизни). В. автор самого первого и наиболее выдающе

167

гося учебника по общей теории относительности ("Пространство. Время. Материя"), содержавшего также физические идеи, которые оказали определяющее влияние на развитие физических наук. Согласно В., математику многие выдающиеся мыслители рассматривали как нечто, "далеко выходящее за пределы эмпирических данных или рациональных дедуктивных умозаключений". Одним из оснований для этого явилась несводимость, например, иррациональных и отрицательных чисел (как достаточно элементарных понятий) ни к дедукциям из эмпирических данных, ни к объектам, заведомо существующим во внешнем мире. При этом В. писал по поводу "вечных истин": "Геделю, с его истовой верой в трансцендентальную логику, хочется думать, что наша логическая оптика лишь немного не в фокусе, и надеяться, что после небольших коррекций мы будем видеть четко, и тогда всякий согласится, что мы видим верно. Но того, кто не разделяет этой веры, смущает высокая степень произвола в системе Z /Цермело - C.C./ или даже в системе Гильберта... Никакой Гильберт не сможет убедить нас в непротиворечивости на вечные времена. Мы должны быть довольны, что какая-нибудь простая аксиоматическая система математики пока выдерживает проверку наших сложных математических экспериментов. Если на более поздней стадии появятся расхождения, то мы еще успеем сменить основания" ("Философия математики и естественных наук"). В. также отмечал по этому поводу, что "Бог существует, поскольку математика, несомненно, непротиворечива, но существует и дьявол, поскольку доказать ее непротиворечивость мы не можем". В. по проблемам оснований математики утверждал (1940), что "несмотря на наше критическое озарение (а может быть, благодаря ему), мы сегодня менее, чем когда-либо раньше, уверены в основаниях, на которых зиждется математика", а вопрос об основаниях математики и о том, что представляет собой в конечном счете математика, для В. оставался открытым, т.к. ему не было известно какое-либо направление, "которое позволит в конце концов найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный "окончательный" ответ будет когда-нибудь получен и признан всеми математиками. "Математизирование" может остаться одним из проявлений творческой деятельности человека, подобно музицированию или литературному творчеству, ярким и самобытным, но прогнозирование его исторических судеб не поддается рационализации и не может быть объективным". Для В. математика была не сводом точных знаний, а видом умственной деятельности, который необходимо рассматривать в исторической перспективе, т.к. "рациональные конструкции и реконструкции оснований при

таком подходе предстают перед нами как попытки исказить историческую правду". В., как и Э.Борель, Р.Бэр и А.Лебег, выражая сомнения в применимости теоретико-множественных методов, тем не менее применял их прагматически и с существенными оговорками относительно надежности результатов: "сейчас мы менее, чем когда-либо, уверены в первичных основаниях математики и логики. Мы переживаем свой "кризис" подобно тому, как переживают его все и вся в этом мире. ...На первый взгляд кажется, что будто нашей повседневной работе он не особенно мешает. Тем не менее я должен сразу же признаться, что на мою математическую работу этот кризис оказал заметное практическое влияние: он направил мои интересы в области, которые я считал относительно "безопасными", и постоянно подтачивал энтузиазм и решимость, с которой я занимался своими исследованиями. Мой опыт, вероятно разделили и другие математики, небезразличные к тому, какое место их собственная научная деятельность занимает в этом мире, в общем контексте бытия человека, интересующегося, страдающего и созидающего" ("Математика и логика"). Исследования В. по основаниям математического анализа показали его логическую необоснованность и необходимость пожертвовать некоторыми его разделами: "неконструктивные доказательства существования извещают мир о том, что сокровище существует, не указывая при этом его местонахождение, т.е. не позволяя это сокровище использовать. Такие доказательства не могут заменить построение - подмена конструктивного доказательства неконструктивным влечет утрату смысла и значения самого понятия "доказательства" ... Уверенным можно быть только в том, что доказано интуиционистскими методами" ("Континуум"). В 1927 В. по поводу отношения Д.Гильберта к интуиционизму писал о том, что с интуиционистской точки зрения обоснованна только "часть классической математики, причем далеко не самая лучшая, - горький, но неизбежный вывод. Гильберту была невыносима мысль об этой ране, нанесенной математике". Исследования В. привели его к выводу о бессодержательности формализованной математики, даже при условии доказательства ее непротиворечивости. Классическая математика была спасена Гильбертом ценой ее формализации и основательного пересмотра содержания, что превратило ее, как писал В., "из системы с интуитивно воспринимаемыми результатами в игру с формулами по определенным, раз и навсегда установленным правилам ...Вполне возможно, что математика Гильберта представляет собой великолепную игру с формулами, более увлекательную, чем шахматы. Но что, спрашивается, дает такая игра нашему разуму, если ее формулы умышленно лишены

168

материального содержания, посредством которого они могли бы выражать интуитивные истины '?". Тем не менее, В. полагал, что в математике Гильберт, по существу, ограничил свои принципы интуиционистскими. В., признавая "невыносимую громоздкость" конструктивных доказательств в интуционизме, тем не менее оспаривал тезис о большей силе традиционных способов построения новых математических объектов и доказательств по сравнению с конструктивными: "Приятно утешать себя надеждой, что сознанию откроются истины более глубокие по своей природе, чем те, которые доступны непосредственно интуиции" ("Разум и природа"). В труде В. "Философия математики и естественных наук" В. систематически изложил интуиционистские концепции математического знания. В. отвергал аксиому сводимости (редукции) Уайтхеда - Рассела, являющуюся базисным основанием логицистского подхода в математических науках, т.к. считал, что теории Уайтхеда и Рассела строят математику на основаниях "не просто логики, а своего рода рая для логиков, снабженного всем необходимым "инвентарем" весьма сложной структуры... Кто из здравомыслящих людей... верит в этот трансцендентальный мир? ...Эта сложная структура требует от нас не меньшей веры, чем учения отцов церкви или средневековых философов-схоластов". ("Философия математики и естественных наук".) Суть философской критики логицистских концепций состояла в том, что если верен основной тезис логицизма (согласно которому, по Куайну, вся математика сводится к логике), то "вся математика является чисто формальной, логико-дедуктивной наукой, теоремы которой следуют из законов мышления", но тогда "каким образом с помощью дедуктивного вывода одни лишь законы мышления могут привести к описанию неисчерпаемого разнообразия явлений природы, к различным применениям чисел, геометрии пространства, акустике, электромагнетизму и механике. Именно так и следует понимать критическое замечание В. "Из ничего и следует ничто" (М.Клайн "Математика. Утрата неопределенности"). В., следуя истории математики и взглядам лидера интуиционистов Л.Э.Я.Брауэра на логику, утверждал, что классическая логика "была абстрагирована из математики конечных множеств и их подмножеств... Забыв о столь ограниченном происхождении, кто-то впоследствии ошибочно принял логику за нечто, стоящее над математикой и предшествующее всей математике, и ...без всякого на то основания применил к математике бесконечных множеств. В этом грехопадении и первородный грех всей теории множеств, за что ее и покарали антиномии. Удивительно не то, что такие противоречия возникли, а то, что они возникли на столь позднем этапе

игры". Позднее В. по этому поводу скажет: "Принцип исключенного третьего может быть верным для Господа Бога, как бы обозревающего единым взглядом бесконечную последовательность натуральных чисел, но не для человеческой логики", а "логика - это своего рода гигиена, позволяющая математику сохранять свои идеи здоровыми и сильными... Неверно утверждать, что доказательство не играет никакой роли: оно сводит к минимуму риск противоречий". О понятии бесконечного множества В. писал в 1946: "Последовательность чисел, которые возрастая, превосходят любой достигнутый ими предел ...есть многообразие возможностей, открывающихся перед бесконечностью; она навсегда останется в стадии сотворения, но не переходит в замкнутый мир вещей, существующих в себе. Источник наших трудностей, в том числе и антиномий, более фундаментален по своей природе, чем указанный принципом порочного круга Рассела, и состоит в том, что мы одно слепо превратили в другое. Брауэр ...показал, как далеко классическая математика, питаемая верой в абсолют, превосходящий все человеческие возможности реализации, выходит за рамки утверждений, которые могут претендовать на реальный смысл и истинность, основанную на опыте". Математики начала 20 в. тратили столько энергии и времени на аксиоматизацию, что в 1935 В., признавая ее ценность, призвал к занятиям более содержательными проблемами, т.к. "аксиоматика лишь придает содержательной математике точность и организует ее. Аксиоматика выполняет функцию каталогизации или классификации". В. был уверен в том, что математика отражает порядок, существующий в природе: "В природе существует внутренне присущая ей скрытая гармония, отражающаяся в наших умах в виде простых математических законов. Именно этим объясняется, почему природные явления удается предсказывать с помощью комбинации наблюдений и математического анализа. Сверх всяких ожиданий, ...мечта ...о существовании гармонии в природе находит все новые и новые подтверждения в истории физики". При этом В. совершенно не исключал того, что именно мечта о гармонии Вселенной "вдохнула жизнь в научное мышление", т.к. наука могла бы погибнуть без "трансцендентальной веры в истинность и реальность и без непрерывного взаимодействия между научными фактами и построениями, с одной стороны, и образным мышлением - с другой" ("Философия математики и естественных наук"). Чистая математика в представлениях В. обладала "нечеловеческим свойством звездного света сверкающего, яркого, но холодного". Типичному представителю интуиционизма в математике, В. тем не менее была близка концепция суждения о правильности математики по степени приме

169

нимости ее к физическому миру: "Насколько убедительнее и ближе к фактам эвристические аргументы и последующие систематические построения в общей теории относительности Эйнштейна или в квантовой механике Гейзенберга-Шредингера. Подлинно реалистическая математика наряду с физикой должна восприниматься как часть теоретического описания единого реального мира и по отношению к гипотетическим обобщениям своих оснований занять такую же трезвую и осторожную позицию, какую занимает физика" ("Философия математики и естественных наук"), причем и теоремы в математике, и утверждения в физике "могут быть формально не обоснованными, но экспериментально проверяемыми гипотезами. Иногда они подлежат пересмотру, но надежным критерием их правильности служит их соответствие реальности". Построения математического ума для В. являлись "одновременно и свободными и необходимыми. Отдельный математик свободен как угодно определять свои понятия и устанавливать свои аксиомы как ему угодно. Но вопрос: заинтересует ли он своих коллег-математиков продуктами своего воображения? ...некоторые математические структуры, развившиеся благодаря усилиям многих ученых, несут печать необходимости, которая не затрагивается случайностями их исторического появления". В ответ на замечания, что интуиционизм не затрагивает вопросы о применениях математики в естественных науках, никак не связывает "математику с восприятием", В. писал: "Всякому, кто хотел бы по-прежнему верить в истинность математических утверждений, в истинность, основанную на опыте, придется принять критику, которой подверг основания математики Брауэр" ("Полвека математики"). Будущее математических наук во все времена их развития никому не внушало особых надежд, т.к. их природа никогда не была понятной полностью. Однако, как писал М.Клайн, математика продолжает бороться с проблемами, возникающими в ее основаниях.

C.B. Силков

ВЕНСКИЙ КРУЖОК - группа ученых и философов, в 1920-е ставшая центром разработки идей логического позитивизма.

ВЕНСКИЙ КРУЖОК - группа ученых и философов, в 1920-е ставшая центром разработки идей логического позитивизма. В.К. был организован в 1922 Шликом на основе семинара при кафедре философии индуктивных наук Венского университета ("кафедре Маха").В В.К. входили: Карнап, Нейрат, Ф.Вайсман, Г. Фейгль, Гёдель, Г. Хан, Ф. Кауфман и др. После того, как В.К. получил международное признание, с ним стали сотрудничать Э. Нагель (США), Айер и др. Участники В.К. выдвинули программу создания новой научной философии на основе идей Маха и "Логико-философского трактата" Витгенштейна. Главной целью

этой философии, являвшей собой платформу В.К., правомерно полагать программу достижения единства знания о мире в контексте переосмысления традиционных максим метафизики. Используя элементы традиционного эмпиризма в духе Юма, идеи Маха о том, что научными являются лишь высказывания о наблюдаемых феноменах, а также тезис Витгенштейна о том, что осмысленные предложения являются таковыми потому, что они описывают определенные факты, представители В.К. разработали программу обновления научного и философского знания. Основным инструментом этой теоретической реконструкции должны были выступить математическая логика и принцип верификации, призванные создать совершенный язык, подобный тому, который был предложен Витгенштейном в "Логико-философском трактате". Характер современной им метафизики члены В.К. оценивали следующим образом: 1) теоретические системы метафизического порядка не содержат ни ложных, ни истинных предложений - к системам такого рода, следовательно, не приложимы стандартные критерии проверяемости; 2) существенно значимой компонентой метафизики являются выступающие результатом процессов воспитания и соответствующих жизненных обстоятельств смысложизненные поведенческие установки, не подлежащие рациональному обоснованию. В свою очередь, все научные предложения, только и могущие фигурировать в научном знании, согласно концепции В.К., делятся на два класса: 1) предложения, не имеющие предметного содержания, сводимые к тавтологии и относящиеся к логико-математической сфере, - аналитические, логические истины; 2) осмысленные предложения, сводящиеся к эмпирическим фактам и относимые к сфере конкретных наук - фактические истины. Прочие же предложения - или абсурдны (бессмысленны), поскольку организованы вопреки логико-синтаксическим правилам, или все еще научно неосмысленны ("метафизические" или философские предложения, оперирующие с понятиями типа "материя", "абсолют", "принцип" и т.п.). Научная осмысленность предложений оказывалась тождественной его проверяемости, в то время как значение способу его верификации. С точки зрения представителей В.К. обретение единства знания осуществимо на фундаменте логики и (как определенная совокупность принципов) включает в себя: а) установку на достижение единства знания; б) признание единства языка ведущим условием объединения научных законов в цельную систему; в) признание осуществимости единства языка только лишь на базе редукции всех высказываний научного порядка к интерсубъективному языку протоколов; г) трактовку тезиса о единстве знания в статусе как теоретического,

170

так и практического постулата. В свою очередь, принцип верификации предполагал критическую проверку высказываний на возможность их сведения к эмпирическим фактам и служил критерием отделения научного знания от бессмысленных (с точки зрения представителей В.К.) проблем метафизики. Эти программные положения нашли выражение в манифесте В.К. "Научное миропонимание. Венский кружок" (1929), который был написан совместно Карнапом, Ганом и Нейратом. В 1930-е В.К. издает несколько периодических изданий, среди которых журнал "Erkenntnis" ("Познание"), проводит ряд конгрессов, активно сотрудничает с другими философами. К концу 1930-х В.К. прекратил свое существование в связи с гибелью Шлика и оккупацией Австрии. Идеи В.К. оказали сильное влияние на развитие логического позитивизма и другие виды сциентистских течений в США и Великобритании.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Истинная поневоле, или Сирота в Академии Драконов

Найт Алекс
3. Академия Драконов, или Девушки с секретом
Любовные романы:
любовно-фантастические романы
6.37
рейтинг книги
Истинная поневоле, или Сирота в Академии Драконов

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Вечная Война. Книга VI

Винокуров Юрий
6. Вечная Война
Фантастика:
боевая фантастика
рпг
7.24
рейтинг книги
Вечная Война. Книга VI

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Я – Орк. Том 2

Лисицин Евгений
2. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 2

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений

Кодекс Охотника. Книга VII

Винокуров Юрий
7. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.75
рейтинг книги
Кодекс Охотника. Книга VII

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия