История греческой философии в её связи с наукой
Шрифт:
Итак, аристотелевское понятие места исключает принцип относительности: место того или иного предмета определяется Аристотелем не через положение его относительно других предметов. Именно так впоследствии определяет место, например Декарт, тоже не допускавший пустоты и не принимавший атомизма. Но Аристотель и здесь верен своему методу: для него отношение всегда вторичнее самих "относимых", а потому и место он должен определить так, чтобы не изменить своему пониманию "сущности". Учение об "абсолютных местах", верхе, низе и т.д.
– это применение аристотелевского учения о сущности к космологии и физике: сущность есть то, что не сказывается ни о каком подлежащем. Аналогия места с "сосудом" поэтому очень важна для Аристотеля; он прямо говорит: "Подобно тому как сосуд есть переносимое место, так и место есть не передвигающийся сосуд".
Однако аристотелевское решение вопроса о сущности места не случайно оказалось слабым
Подводя итог анализу аристотелевского понятия места, остановимся еще раз на "модели" места - сосуде. Почему все-таки именно сосуд остается для Аристотеля наилучшим примером - парадигмой места? Основные признаки места, по Аристотелю, следующие: 1) место объемлет тот предмет, местом которого оно является; 2) не есть что-либо, присущее самому предмету; 3) первичное место не меньше и не больше предмета; 4) оно оставляется предметом и отделимо от него; 5) всякое место имеет верх и низ; 6) каждое тело по природе перемещается и остается в свойственном ему месте, а это и составляет верх и низ; 7) оно неподвижно.
1. Место объемлет предмет, говорит Аристотель, в этом отношении оно сродни форме, которая всегда есть предел, граница, то, что "собирает" материю и делает ее некоторой вещью. Подобно тому как для линии ее "формой" будет ее граница, т.е. две точки, два "конца" линии, подобно этому и сосуд будет как бы "формой" содержащейся в нем жидкости: жидкость получает форму сосуда.
2. Но здесь же Аристотель указывает, что место - это все-таки не форма: ведь без формы предмет перестает быть самим собой, форма присуща самому предмету, а место - нет: вино, вылитое из амфоры в чаши, остается самим собой, хотя и меняет свое место. Значит, место подобно форме, но не есть форма предмета.
3. Однако место подобно и материи: первичное место не меньше и не больше предмета, а потому Платон и отождествлял его именно с материей: ведь место имеет три измерения, подобно тому как их имеет и предмет; так что совершенно безразлично, вычислять ли объем тела или объем того места, которое оно занимает.
4. Но, как и в случае с формой, место, по Аристотелю, отделимо от предмета, в то время как материя от него неотделима; предмет остается тем же самым, когда передвигается в другое место, а это значит, что его материя и его место нетождественны.
Таким образом, место в некотором отношении родственно форме, в некотором материи, но в других отношениях оно отлично как от той, так и от другой. Как родственное с формой, оно есть граница тела (недаром же - сосуд: без него тело растеклось бы); как родственное с материей, оно протяженность тела. Если бы тело не двигалось, то сосуд был бы для него формой; но, двигаясь, тело оставляет свое место. Значит, можно сказать, что место - это заменитель, эрзац формы, как бы форма для движущегося тела, и именно постольку, поскольку оно движется. Форма - "граница" предмета, поскольку он находится "в себе"; место же - граница "объемлющего тела", т.е. та граница, которая дается телу другим; образно говоря, это ослабленный вариант границы, ибо при движении тело тоже нуждается, по Аристотелю, в границах, но уже не только как тело, а и как движущееся тело. Место и есть граница тела, поскольку оно движется. Какая трудная, однако, задача найти такую "границу": ведь граница по самому своему понятию есть нечто неподвижное, есть то, что удерживает (а значит, и само фиксировано, жестко определено); а требуется найти такую границу для самого движения, предел движения, взятого, однако, не абстрактно (как в случае движения "материальной точки"), а вместе с движущимся телом (с тем, что движется). Из-за трудности этой задачи и понятие места у Аристотеля является столь трудным для работы с ним; не случайно это понятие оказалось у него одним
По самому своему понятию, поскольку оно граница движущегося, место должно соприкасаться с телом, в этом месте находящимся. Но поскольку существует место не только для каждого движущегося тела, но и для всех вообще движущихся тел, то в результате Аристотелю приходится ввести (при общем, казалось бы, понятии места) разные его определения. Для каждого тела его место - это первая неподвижная граница объемлющего тела; а для всех вообще тел - это абсолютная граница всего, что способно двигаться: абсолютный верх и низ. Ясно, что абсолютный верх и низ нельзя назвать "первой границей" ни для какого тела в отдельности; это первая граница для всего космоса в целом. Такое различение каждого и всего вместе, различение, связанное с исходными принципами аристотелевского метода мышления, отличающими его от платоников и атомистов, приводит впоследствии, в средневековой науке, к различению так называемых категорематического и синкатегорематического применения терминов. Эти два разных способа применения терминов разрабатываются как в логике - в связи с проблемой суждения, так и в космологии и физике - особенно в связи с проблемой бесконечного. Из проведенного анализа можно видеть, что место у Аристотеля, так же как и время, не может быть полностью абстрагировано от того, что его "наполняет". Хотя тело в принципе и отделимо от своего места, но "абсолютные места", верх и низ, неразрывно связаны с тяжестью и легкостью тел, "местами" которых они являются.
Соотношение математики и физики
Основные философско-методологические принципы Аристотеля, например требование опосредования противоположностей, закон противоречия, а также исходные категории, такие, как "сущность", "возможность" и "действительность" и другие, разработаны им в полемике с Платоном, для которого отношение первично, а относимые реалии вторичны. Однако, отвергая платоновское и пифагорейское обоснования математического знания, Аристотель не может не предложить другого, так как математика в его время была не только самой разработанной и зрелой среди наук, но и самой точной, а потому и самой почтенной наукой. Естественно поэтому, что мыслитель, посвятивший себя науке и ее обоснованию, должен был указать место и функцию математики в системе научного знания.
При обосновании математики Аристотель исходит из своего учения о сущности. "Представляют ли числа, геометрические тела, плоскости и точки некоторые сущности или нет?" На этот вопрос он отвечает отрицательно: "Состояния, движения, отношения, расположения и соразмерности не обозначают, по-видимому, сущности чего бы то ни было: ведь все они высказываются о чем-нибудь, что лежит у них в основе, и ни одно не представляет собою некоторую данную вещь" (курсив мой.
– П.Г.). Но если математические предметы не являются сущностями, то возникает вопрос об их способе бытия, т.е. об их онтологическом статусе: каким образом они существуют? Математические предметы не могут существовать в чувственных вещах, говорит Аристотель, ибо тогда, во-первых, в одном и том же месте находились бы два тела, что невозможно, а во-вторых, в таком случае нельзя было бы разделить какое бы то ни было физическое тело: ведь деление физического тела, которое является непрерывным, и деление математического "тела", представляющее собой особую процедуру, ничего общего с физическим делением не имеющую, различны.
Но математические предметы, рассуждает далее Аристотель, не могут существовать и вне чувственных вещей, как самостоятельные сущности. "Если помимо чувственных тел будут существовать другие тела, отдельные от них и предшествующие чувственным, тогда ясно, что и помимо плоскостей должны иметься другие плоскости, отдельные (от первых), и также - точки и линии... А если существуют они, тогда в свою очередь - помимо плоскостей, линий и точек математического тела - будут существовать другие, данные отдельно..." Такой же аргумент выдвигает Аристотель и против платоновского учения об идеях, что вполне понятно: ведь идеи и числа у позднего Платона имеют одинаковый онтологический статус. Сущность этого аргумента сводится к тому, что если наряду с чувственно данным медным кубом существует - отдельно от него - еще и математический куб, так сказать, идеализованный образец первого, то нужно допустить также и идеальные грани наряду с чувственно данными гранями медного куба. Но коль скоро мы вступили на этот путь рассуждения, то самому "идеальному кубу" тоже должны предшествовать те элементы, из которых он "состоит", а именно наряду с гранями идеального куба должны существовать еще грани (т.е. плоскости) сами по себе. Таким образом, окажется необходимым допустить плоскости уже трех родов: 1) те, которые мы находим в физическом кубе, 2) те, что в кубе математическом, и, наконец, 3) те, что существуют сами по себе - первичные, исходные. Нетрудно понять, что при таком рассуждении линии будут уже четырех родов, а точки пяти.