История лазера
Шрифт:
Блох и Парселл получили за свои исследования Нобелевскую премию в 1952 г. Они пришли к магнитному резонансу двумя разными путями, которые, однако, были, по существу, сходными. Завойский был первым, кто наблюдал переходы между уровнями тонкой структуры основного состояния в парамагнитных солях (парамагнитный электронный резонанс).
Феликс Блох родился в Цюрихе, 3 октября 1905 г. Он поступил в Федеральный институт технологии (учебное заведение, в котором учился Эйнштейн) в 1924 г. После одного года обучения на инженера он решил вместо этого изучать физику и перевелся на отделение физики и математики того же института. В течение последующих лет он занимался под руководством профессоров: П. Дебая (1884—1966), Г. Вейля (1885—1955) и Э. Шрёдингера. Первоначально интересовался теоретической физикой. После того, как Шрёдингер оставил Цюрих осенью 1927 г., он продолжил свои занятия с В. Гейзенбергом в университете Лейпцига, где летом 1928 г. получил докторскую степень. Его диссертация была посвящена квантовой механике электронов в кристаллах
Блох покинул Германию в 1933 г. после прихода Гитлера к власти. Годом позже он получил позицию в Стэнфордском университете (Калифорния, США). Там он начал экспериментальные исследования, которые проводил вплоть до своей отставки в 1971 г. В 1936 г. он опубликовал работу, в которой показал, что магнитный момент свободных нейтронов можно измерить путем наблюдения рассеяния их на железе. В течение войны он был привлечен на ранних стадиях работы в атомном проекте в Стэнфордском университете и в Лос-Аламосе, а позднее участвовал в работах по противодействию радарам в Гарвардском университете. Благодаря этой последней работе он познакомился с самыми современными достижениями в электронике. Это, в сочетании с его ранней работой по магнитному моменту нейтрона, позволило ему предложить новый подход к исследованию ядерных моментов в твердых телах. Немедленно после возвращения в Стэнфорд он начал изучать ядерную индукцию, как позднее назвал ее.
Блох также занимал важные научные посты. В 1954 г. он стал первым директором ЦЕРНа в Женеве. Он скончался в Цюрихе 10 сентября 1983 г.
Эдвард Миле Парселл родился в штате Иллинойс (США) 30 августа 1912 г. В 1929 г. он поступил в университет Пурду штата Индиана, который закончил в 1933 г. по специальности радиоинженера. Его интересы уже обратились к физике и выдающийся профессор Ларк-Горовиц, которому во многом обязана физика твердого тела в США, позволил ему принимать участия в экспериментальных исследованиях по дифракции электронов. После года, проведенного в Германии в Высшей технической школе в Карлсруе, где он занимался под руководством профессора В. Вейзеля, поступил в Гарвардский университет, где и получил докторскую степень. После работы в течение двух лет преподавателем физики в Гарварде поступил в Лабораторию излучения в MIT, которая была организована для проведения военных исследований и разработок микроволновых радаров. В этой лаборатории он стал руководителем Группы фундаментальных исследований, которая занималась освоением новых диапазонов частот и разработкой новых микроволновых устройств. Открытие ядерного резонансного поглощения, как он его назвал, было сделано сразу же после окончания войны и примерно в то время, когда Парселл возвратился в Гарвард на должность доцента физики. Он стал профессором физики в 1949 г. и скончался в 1997 г.
Евгений Константинович Завойский родился в Казани в семье врача. Учился и работал в Казанском университете. Почти со своих студенческих лет он интересовался возможностью использовать радиочастотные электромагнитные поля для изучения строения и свойств вещества. С начала 1933 г. выполнял исследовательские эксперименты по резонансному поглощению радиочастотного излучения в жидкостях и газах. В 1941 г. он стал первым, кто использовал модуляцию постоянного магнитного поля на звуковых частотах в таких экспериментах. В 1944 г. им открыт электронный парамагнитный резонанс, что и стало предметом его докторской диссертации.
В течение 1945—1947 гг. он выполнил серию важных экспериментов, зарегистрировав кривые дисперсии в диапазоне резонанса и получив электронный парамагнитный резонанс в солях марганца. В дальнейшем более 20 лет работал в Курчатовском Институте Атомной Энергии.
Завойский внес вклад в различные области ядерной физики, разработав, в частности, в 1952 г. сцинциляторную трековую камеру [4] . В области физики плазмы он открыл в 1958 г. магнито-акустический резонанс. Награжден Ленинской и Государственной премиями. Его достижения стали известными на Западе лишь после окончания Второй мировой войны. Е. К. Завойский скончался в 1976 г.
4
Е.К. Завойский и С.Д. Фанченко впервые показали, что для непосредственного наблюдения сверхбыстрых процессов можно использовать электронно-оптический преобразователь (ЭОП). Использование ЭОПов с пикосекундным временным разрешением сыграло большую роль в исследованиях лазеров ультракоротких импульсов. — Прим. пер.
Сообщения о первых экспериментах по магнитному резонансу были сделаны Блохом и Парселлом в течение одного месяца и независимо друг от друга. В январском выпуске 1946 г. престижного американского журнала Physical Review, Парселл, Торрей и Паунд (г. р. 1919) сообщили в коротком письме редактору (полученному 24 декабря 1945 г.), что они наблюдали поглощение радиочастотной энергии в твердом материале (парафин) в результате переходов, индуцированных между энергетическими уровнями, которые соответствуют различным ориентациям спина протона в постоянном магнитном поле.
В эксперименте образец парафина помещался в резонатор, который, в свою очередь, располагался между полюсами постоянного магнита. Радиочастотная волна с крайне низким уровнем ее магнитного поля, направленного перпендикулярно постоянному полю, посылалась в этот резонатор, и измерялась ее интенсивность на выходе из резонатора. Когда сильное магнитное поле медленно изменялось, наблюдался резкий резонанс поглощения (рис. 37). Поскольку протон имеет спин 1/2, можно предполагать, что при помещении его в постоянное магнитное поле, он может занять только два положения: либо его спин параллелен полю, либо его спин антипараллелен полю. Разность энергий между этими двумя энергетическими уровнями, которые соответствуют этим двум позициям, при той напряженности магнитного поля, которая была в эксперименте, соответствовала частоте 29,8 МГц. На этой частоте и поглощалась микроволновое излучение (см. рис. 37). При комнатной температуре (при которой и выполнялся эксперимент) разность между числом протонов, выстроенных вдоль магнитного поля и выстроенных против него, крайне мала. Однако полное число протонов было столь велико, что заметный эффект получался как только достигалось термическое равновесие. Ключевым вопросом было время, требуемое для установления термического равновесия между спинами и решеткой. Разность в населенностях этих двух уровней является непременным условием для наблюдения поглощения.
Рис. 37. Кривая поглощения протонного резонанса в растворе нитрата железа, полученная методом Парселла
Авторы это очень хорошо понимали и принимали во внимание конкуренцию между процессами поглощения и вынужденного излучения. Действительно, процессы поглощения включают поглощение фотона микроволнового излучения, что заставляет частицу перейти с низшего на высший уровень. Наоборот, процессу вынужденного излучения соответствует испускание фотона, который подобен фотону, индуцирующему этот процесс, и который заставляет частицу перейти с верхнего на нижний уровень. Поэтому, если эти два процесса поглощения излучения и вынужденного излучения происходят в равной степени, то никакого сигнала изменения излучения, проходящего через образец, не получится. По этой причине важно установление термического равновесия, так как при этом нижний энергетический уровень более населен, чем верхний, и, следовательно, процесс поглощения превалирует.
Здесь может помочь статистическая механика. Согласно Больцману, отношение между числом молекул, находящихся на верхнем энергетическом уровне, к числу молекул, находящихся на нижнем, дается экспоненциальной зависимостью. В показателе с отрицательным знаком стоит разность энергий двух состояний, деленная на фактор kT, где k — постоянная, веденная Больцманом, а Т — абсолютная температура. В нашем случае, разность энергий двух магнитных уровней пропорциональна напряженности приложенного магнитного поля, и, увеличивая поле, можно увеличить эту разность. Однако значения магнитных полей, достигаемых доступной техникой, ограничены. Поэтому разность энергий при комнатной температуре мала и сравнима со значением kT.
Этот факт означает, что, например, в случае водорода и разумного значения магнитного поля (7000 Гаусс) отношение населенностей верхнего и нижнего уровней составит весьма малую величину. Этого, тем не менее, достаточно, чтобы зарегистрировать сигнал поглощения.
Открытие Парселла можно рассматривать, как естественное следствие попыток, предпринятых в Лаборатории Радиации МIТ для уменьшения длины волны радара до 1,25 см. Получилось так, что эта длина волны попадает в пол осу сильного поглощения водяных паров атмосферы, и это препятствовало работе радара. Парселл уделял большое внимание точным методам измерения полос поглощения и в соответствии с этим назвал свою методику резонансным поглощением ядерного магнитного резонанса.
В следующем выпуске Physical Review, снова в виде письма в редакцию, появилось короткое сообщение Ф. Блоха, В. Хансена и М. Паккарда, полученное 29 января 1946 г. Авторы описывали эксперимент в определенном отношении подобный эксперименту Парселла, в котором они использовали воду. В их эксперименте на постоянное магнитное поле, которое прикладывалось в одном направлении (например, вертикальное), накладывалось малое осциллирующее магнитное поле вдоль горизонтального направления. Магнитные моменты ядер образца, первоначально параллельные постоянному полю, возмущались в такой конфигурации малым осциллирующим полем, которое заставляло их прецессировать вокруг этого поля. При резонансной частоте это малое поле может инвертировать направление магнитных моментов. Это, в свою очередь, могло проявиться в эффекте электромагнитной индукции в катушке, помещенной в соответствующее место. Это явление, открытое Фарадеем в 1822 г., заключается в том, что изменяемое магнитное поле индуцирует ток в электрической цепи.
Это исследование Блоха мотивировалось стремлением найти методики для точных измерений магнитного поля. В 1946 г. Блох также дал теоретическое объяснение эксперимента, введя два времени релаксации спиновой населенности. Одно время описывалось, как достижение быстрого термического равновесия спинов ядер с упругими колебаниями материала (спин-решеточная релаксация). Второе время является характеристическим временем, в течение которого поперечные компоненты намагничивания релаксируют к своему равновесию, т.е. к нулю.