Чтение онлайн

на главную

Жанры

История математики. От счетных палочек до бессчетных вселенных
Шрифт:

К началу XIX века, когда все попытки доказать пятый постулат закончились поражением, математики поняли, что возможны другие непротиворечивые геометрии, кроме евклидовой. И вот на сцену выходят два неизвестных математика, совершающих одновременное открытие.

Николай Иванович Лобачевский (1792–1856) был сыном мелкого российского чиновника, который умер, когда Николаю было всего семь лет, оставив в тяжелом финансовом положении вдову и трех сыновей. Семья переехала в Казань, где все дети отлично учились, но Николай Лобачевский проявил себя ярче других. В четырнадцать лет он поступил в недавно основанный Казанский университет и там познакомился с выдающимися профессорами, многие из них были родом из Германии. В возрасте двадцати одного года Лобачевский начал преподавать, а два года спустя был утвержден экстраординарным профессором. Будучи терпеливым, методичным и трудолюбивым человеком, он заслужил уважение других ученых, которые взвалили на него множество неблагодарных административных задач. Он стал университетским библиотекарем, а также хранителем плохо организованного университетского музея. Он сам, без помощников, выполнил всю работу, внеся

в организацию музея и библиотеки некоторый порядок.

В 1825 году правительство наконец назначило в университет профессионального хранителя, который впоследствии использовал свое политическое влияние для того, чтобы утвердить Лобачевского на высокий пост. В 1827 году Лобачевский стал ректором университета. Со свойственной ему энергией он приступил к реорганизации штата, либерализовав обучение и создав новую инфраструктуру. Кроме этого он основал обсерваторию. Университет был его жизнью. В 1830 году, когда в Казань пришла холера, Лобачевский разрешил всем студентам, сотрудникам и их семьям укрыться в стенах университета. Поскольку там действовали строгие санитарные правила, из 660 человек умерло только 16. В 1846 году, несмотря на его неутомимый труд на благо Казанского университета, правительство, не объясняя причин, уволило Лобачевского с поста ректора и профессора. Его коллеги и друзья умоляли власти сменить гнев на милость, но все было напрасно. У Лобачевского сильно упало зрение, но, несмотря на это, ученый продолжал свои математические исследования. Последнюю публикацию Лобачевскому пришлось надиктовывать, поскольку к тому времени он окончательно ослеп.

В 1826 году Лобачевский представил для напечатания в «Записках физико-математического отделения» сочинение под названием «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных» (на французском языке), в котором высказал некоторые свои геометрические идеи. Издание не состоялось. Потребовалось три года, чтобы «Казанский вестник» опубликовал работу Лобачевского «О началах геометрии». Но в любом случае 1826 год — официальная дата рождения неевклидовой геометрии в том виде, в каком ее сформулировал Лобачевский. В своей работе он утверждал, что пятый постулат не может быть доказан, и выстроил новую геометрию, заменив этот постулат другим. Он сумел оценить смутные догадки Саккери и Ламберта, выстроив геометрию, которая была в каждой своей части такой же прочной и логичной, как геометрия Евклида. Даже самому Лобачевскому казалось, что некоторые из выведенных им теорем противоречат здравому смыслу. Он назвал свое открытие «воображаемой геометрией». Ученый не тешил себя иллюзиями о важности собственной работы. В 1835–1838 годах его «Новые начала геометрии с полной теорией параллельных» появились на русском языке, а в 1840 году «Геометрические исследования по теории параллельных линий» вышли на немецком. Именно на основании этой книги Гаусс рекомендовал Лобачевского Научному обществу Геттингена, в которое тот был избран в 1842 году. Однако Гаусс отказался похвалить его работу в печати, тем самым замедлив понимание этих революционных идей математическим сообществом. Этот факт больше всего разочаровал Лобачевского, даже больше, чем его изгнание из университета и слепота. В 1855 году вышла последняя книга Лобачевского, «Пангеометрия», она была издана одновременно на французском и русском языках. На следующий год Лобачевский — «Коперник геометрии» — умер. Физическая интерпретация неевклидовой геометрии была выполнена итальянским математиком Эудженио Бельтрами (1835–1900), который показал, что геометрии Лобачевского и более ранней работе Ламберта соответствует поверхность псевдосферы.

Новый постулат Лобачевского можно объяснить следующим образом. Вообразите себе бесконечную прямую и выберите точку, не лежащую на этой линии. Согласно постулату Евклида, через эту точку можно провести одну и только одну линию, параллельную первой. Лобачевский заявил, что через эту точку можно провести больше одной линии и все эти линии «параллельны» исходной линии в том смысле, что они не пересекаются ни в одной точке. Выражение этого в математических терминах приводит к странной, но совершенно непротиворечивой геометрии. Фактически существует бесконечное число таких геометрий, каждая из которых соответствует своему «углу параллелизма».

Нежелание Гаусса позитивно оценить работу Лобачевского отчасти вызвано его стремлением продемонстрировать беспристрастность своему другу Фаркашу Бойаи, сын которого, Янош Бойаи (1802–1860) одновременно с Лобачевским работал в области неевклидовой геометрии. Фаркаш был провинциальным преподавателем математики в венгерской глубинке (теперь эта территория принадлежит Румынии), который потратил много сил и времени на то, чтобы доказать пятый постулат. Когда этой задачей занялся его сын, он отчаялся и написал ему в письме: «Ради Бога, я умоляю тебя, брось все это. Бойся этого не меньше, чем чувственных страстей, потому что это также может поглотить все твое время и лишить здоровья, спокойствия духа и счастья в жизни». Неустрашимый или, возможно, даже подталкиваемый неким страхом, Янош продолжал свои исследования и в 1829 году фактически пришел к тем же заключениям, что и Лобачевский. По его собственным словам, Бойаи разработал «абсолютную науку о пространстве» на базе тех же принципов, что и Лобачевский. Его отец издал статью сына как приложение к собственному трактату. Эта работа датируется 1829 годом, то есть тем же годом, что и труд Лобачевского, но она не была издана вплоть до 1832 года. Спрятанная в конце непопулярной книги, она, возможно, была бы полностью потеряна для истории, если бы не тот факт, что Фаркаш был другом Гаусса. Он послал ученому книгу. Даже сухой ответ Гаусса мог бы выразить одобрение, но Гаусс отказался от публичной поддержки этого труда, заявив, что похвалить работу означало бы просто похвалить себя, поскольку он в последнее время придерживался тех же взглядов. Янош был раздавлен ответом, он опасался, что у него отнимут его открытия. В дальнейшем он отказался от каких-либо публикаций.

Нежелание Гаусса признать работы Лобачевского и Бойаи выглядит грубостью. Да, Гаусс, конечно, думал об этих проблемах, но нет никаких свидетельств, что он изучал различные результаты неевклидовой геометрии. Рука помощи, протянутая признанным мастером, могла бы спасти карьеру Бойаи и здоровье Лобачевского. Гаусс подошел к вопросу с другой стороны. Рассматривая линии на плоскости, он вывел теорему о том, что «кривизна поверхности связана с используемым методом измерения» (то есть с математическим выражением, используемым для вычисления расстояния между двумя точками). Гаусс показал, что искривление не зависит от места нахождения поверхности. Кривизна была внутренней особенностью, связанной с суммой углов треугольника, расположенного на такой поверхности. В этом контексте близость к неевклидовой геометрии очевидна.

Когда пал пятый постулат, этот столп евклидовой геометрии, просуществовавший более двух тысяч лет, то рухнула и сама конструкция.

Как ни парадоксально, открытие геометрии, в которой постулат Евклида о параллельности прямых не верен, тем не менее реабилитировало геометрию Евклида, хотя и весьма изощренным способом: раз для разрушения этого столпа потребовались такие усилия, значит, он все-таки необходим! Евклидова геометрия оставалась логически последовательной, но теперь это была просто одна из многих возможных геометрий, и, следовательно, уже никто не был уверен, что это геометрия окружающего нас пространства. Развивающееся понимание внутренних свойств пространства приобрело значение как метод исследования реальной геометрии пространства, поскольку не существовало способа его познания извне! Существовала опасность, что геометрия может стать занятным экспонатом экзотического собрания редкостей, но был один математик, который дал совершенно новое определение геометрии.

Бернхард Риман (1826–1866), сын пастора, был воспитан в скромности, но получил хорошее образование в Берлине и Геттингене, где в 1854 году стал приват-доцентом, а затем и доцентом. Чтобы занять этот пост, Риман должен был по уставу выступить перед профессорским составом с лекцией. Это был самый увлекательный доклад в истории математики. Лекция, носившая название «О гипотезах, лежащих в основании геометрии», самым подробным образом описывала геометрию как предмет. Это было описание долгого пути от линейки и циркуля Евклида. Риман определил геометрию как исследование множеств — ограниченных или неограниченных пространств любого порядка (возможно бесконечное число порядков), вместе с системой координат и способом измерения кратчайшего расстояния между двумя точками. В евклидовой трехмерной геометрии способ измерения определяется как ds 2= dx 2+ dy 2+ dz 2— дифференциал, эквивалентный теореме Пифагора. Эти множества — само пространство без внешней системы координат. Искривление пространства было, таким образом, полностью определено в терминах внутренних свойств множеств в любом пространстве. Для Римана геометрия была, по существу, наукой о наборах упорядоченных n-кортежей, объединенных согласно определенным правилам; его идеи о пространствах были настолько общими, что казались практически нереальными. Любые отношения между переменными можно было счесть «пространством». Если для системы не существует метода определения расстояния между двумя точками пространства или двумя элементами множества, тогда применяется ветвь математики, известная как топология. Она описывает, как различные области пространства связаны между собой.

Риман изобрел инструменты, которые теперь активно используются всеми математиками. Нет ничего удивительного в том, что в этом случае обычно скупой на похвалу Гаусс выразил энтузиазм по отношению к работе другого ученого. В рамках расширенного представления о геометрии Римана мы видим, что евклидова геометрия — это пространство, определенное постоянной кривизны, равной нулю. Геометрия Лобачевского имеет кривизну -1, а сферическая геометрия — кривизну +1. Хотя Римана можно было бы считать новым Евклидом, его имя связано с очень своеобразной геометрией, которая преобразует сферу в плоскость.

Позднее Риман внес свой вклад в теоретическую физику, и его общее исследование измерения расстояний между точками в искривленных пространствах в конечном счете проложило путь к общей теории относительности. Пространство, в котором мы живем, больше не было евклидовым, теперь у нас появились математические инструменты, позволявшие исследовать истинную геометрию Вселенной.

В геометрии я нашел некоторые несовершенства, которые я считаю причиной того, что эта наука, поскольку она не переходит в анализ, до настоящего времени не вышла ни на один шаг за пределы того состояния, в каком она к нам перешла от Евклида. К этим несовершенствам я отношу неясность в первых понятиях о геометрических величинах, способы, которыми мы себе представляем измерение этих величин, и, наконец, важный пробел в теории параллельных линий, к восполнению которого все усилия математиков до настоящего времени были тщетными.

Николай Иванович Лобачевский. Геометрические исследования по теории параллельных линий (1840) [20]

20

Цит. по: Н. И. Лобачевский. Геометрические исследования по теории параллельных линий. Перевод, комментарии, вступительные статьи и примечания профессора В. Ф. Кагана. — М.—Л.: Издательство Академии наук СССР, 1945. — С. 37. Не найдя понимания в России, Н. И. Лобачевский опубликовал эту книгу на немецком языке в Берлине в 1840 г.

Поделиться:
Популярные книги

Эффект Фостера

Аллен Селина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Эффект Фостера

Аромат невинности

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
9.23
рейтинг книги
Аромат невинности

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Младший научный сотрудник

Тамбовский Сергей
1. МНС
Фантастика:
попаданцы
альтернативная история
6.40
рейтинг книги
Младший научный сотрудник

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й

Вечная Война. Книга VIII

Винокуров Юрий
8. Вечная Война
Фантастика:
боевая фантастика
юмористическая фантастика
космическая фантастика
7.09
рейтинг книги
Вечная Война. Книга VIII

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Последний попаданец 12: финал часть 2

Зубов Константин
12. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 12: финал часть 2

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Гром над Академией. Часть 1

Машуков Тимур
2. Гром над миром
Фантастика:
фэнтези
боевая фантастика
5.25
рейтинг книги
Гром над Академией. Часть 1

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5