Из чего всё сделано? Рассказы о веществе
Шрифт:
Если представить, что дети в хороводе — это атомы, а их соединенные руки — это химические связи, то мы получим художественное изображение молекулы серы, состоящей из восьми атомов
Но вернёмся к самим атомам. Представьте, что у вас есть 114 разновидностей бусинок — разного цвета, разного размера и формы и в любом количестве. Как вы думаете, сколько серёжек и других украшений вы можете собрать из этого богатства, составляя разные сочетания
Так и в природе. Элементы, точнее атомы элементов, соединяясь между собой в разных соотношениях, образуют всё гигантское многообразие веществ на Земле. Атомы в молекуле крепко сцепляются, образуя между собой связи, которые химики называют химическими, поэтому большинство молекул чувствуют себя вполне устойчиво и не разваливаются на части. Другое дело, что некоторые атомы не могут соединяться с другими или могут принять в объятия только ограниченное количество товарищей по таблице Менделеева. Здесь природа командует, что ей нравится, а что нет. У неё своё представление о красивых и полезных серёжках. И эти предпочтения природы химики считают для себя законом.
Атомы одного элемента могут соединяться между собой. И тогда мы получаем вещества, которые называют именем элемента, например золото. Такие вещества химики именуют простыми. Если же в одной молекуле встречаются атомы разных элементов, тогда мы получим более сложное вещество, именуемое «соединением». Всё богатство и разнообразие бесчисленного количества веществ, окружающих нас, — это всего лишь комбинации разных атомов, разных элементов. Если два атома кислорода свяжутся вместе, то получится кислород, невидимый газ, который входит в состав воздуха и которым мы дышим и которого нам порой так не хватает в душном городе. Если три атома — то озон, тоже — невидимый газ, который образуется в атмосфере во время грозы. Если же атом кислорода соединится с двумя атомами водорода, то получится самое чудесное вещество на Земле — вода, которую мы пьем. Или вот ещё знаменитая парочка — атом натрия и атом хлора. Связываясь между собой, они образуют то самое белое кристаллическое вещество, которое мы насыпаем в солонку.
Да, я знаю, какой коварный вопрос вертится у вас на языке — из чего же тогда сделаны атомы? Боюсь, что путешествие в глубь вещества выглядит почти бесконечным. Возможно, так оно и есть. Однако про атомы сегодня уже многое известно. Физики утверждают, что атомы тоже имеют структуру. В каждом крошечном атоме есть ещё более мелкие детали: ядро, состоящее из протонов и нейтронов (физики называют их элементарными частицами), вокруг которого, подобно планетам вокруг Солнца, вращаются другие элементарные частицы, электроны.
Благодаря этой внутренней структуре атомов элементы различаются между собой. Эти же различия позволили химикам занести элементы в таблицу Менделеева в строгом порядке. Ведь не по алфавиту же они расположены и не по датам открытия. Элементы расположены под своими номерами. Причём номер элемента зависит от строения его атома. Например, водород стоит под № 1. Это значит, что в его атоме вокруг ядра вращается всего один электрон. У гелия под № 2 — два электрона, а у кислорода под № 16 — шестнадцать. Количество электронов в атоме элемента — очень важный показатель, от него зависят свойства, характер и поведение элемента. Поэтому грамотный химик, глядя на таблицу Менделеева, может точно сказать, атомы каких элементов могут образовать химическую связь, какие атомы, объединяясь, образуют слиток металла, а какие — газ.
Получается, что вся материя во Вселенной, включая Землю
Нет, нет, только не спрашивайте, из чего сделаны протоны, нейтроны и электроны! Вопрос, конечно, хороший, спору нет. И физики по этому поводу начнут рассказывать о кварках, из которых сложены протоны и нейтроны, об их «аромате», «цвете» и других свойствах, о том, что кварки, в свою очередь... Тут мы остановимся, тем более что в глубине материи ещё много неясного. Наш чудный мир не познан до конца, и ответ на многие нерешённые пока вопросы, вполне возможно, найдёте вы, когда станете взрослыми и посвятите себя науке.
Я чувствую, как в вас закрадывается сомнение. Если эти молекулы, атомы и элементарные частицы столь малы, что их невозможно увидеть, то почему мы так уверенно говорим об их существовании? Может, и нет их вовсе?
Действительно, размеры атома ничтожны. И до последнего времени не было такого микроскопа, который позволял бы их рассмотреть. Но это не значит, что нельзя убедиться в существовании атомов и элементарных частиц.
Представьте, что у вас в доме завелась мышка. Её не видно, но вы точно знаете, что она есть: кусочек сыра, оставленный на столе, ночью куда-то исчезает, в доме появляются мышкины следы, а по ночам слышится какой-то шорох. Значит, мышка есть, хотя её и не видать. Такой вывод мы сделали, как скажут учёные, на основании косвенных наблюдений. Или вот летит по небу самолет. Высоко-высоко, его и не видно совсем, и шума моторов не слышно. Зато отчётливо виден белый след, который он оставляет на небе после себя. Учёные называют его инверсионным следом.
Вещества умеют оставлять красивые следы. Например, марганцовка (на языке химиков — перманганат калия), растворяющаяся в воде
Ну что ж, это отличная идея — узнать о существовании частиц по их следам. Этот подход использовал шотландский физик Чарльз Вильсон, когда в начале XX века создал замечательную камеру Вильсона. Прозрачная камера содержит перенасыщенный водяной пар. Такому пару достаточно малейшего вмешательства, чтобы составляющие его молекулы воды, парящие в воздухе, начали собираться вместе и образовывать капельки воды, видимые глазу. Этот процесс называется «конденсация», и вы часто его наблюдаете, когда запотевают окна в машине или утром после холодной ночи выпадает роса на траве и цветах. И кстати, именно так образуется след от самолета в небе. Конденсацию паров воды вызывают частички не полностью сгоревшего топлива, вылетающие из двигателя. Поэтому инверсионный след часто называют ещё и конденсационным.
Вот в такую камеру влетает элементарная частица, электрон или протон, которую физики предварительно сильно разгоняют на специальных ускорителях элементарных частиц — циклотронах. В мгновение ока частица проходит камеру насквозь и оставляет после себя конденсационный след, состоящий из капелек воды. Этот след, который физики называют треком, не исчезает сразу же, поэтому у исследователей есть время, чтобы сфотографировать его. Удивительно красивые получаются фотографии. Физики не просто разглядывают их, а читают как книгу о жизни элементарных частиц и о тех событиях, которые происходят при их столкновении в камере Вильсона.