Избегайте занудства
Шрифт:
Розалинда тоже могла бы сосредоточиться на двухцепочечных моделях ДНК. За год с лишним до этого она тщательно промерила дифракционные картины кристаллической А-формы ДНК в поисках проявлений молекулярной симметрии. Обнаружив, что полученные ею данные совместимы с тремя возможными химическими пространственными группами, она отправилась за советом в Оксфорд к Дороти Ходжкин, которая была тогда первым во всей Англии кристаллографом и получила заслуженное признание за решение проблемы структуры молекулы пенициллина. Однако когда Дороти узнала, что Розалинда рассматривает пространственные группы с зеркальной симметрией, она сразу почуяла неискушенного кристаллографа. Опытный кристаллограф никогда не предположил бы, что зеркальная симметрия свойственна молекуле, основу которой составляет исключительно 2-дезокси-В-рибоза. Дороти считала, что Розалинде вместо этого следовало бы разобраться в том, о чем говорит третья моноклинная пространственная группа (прямоугольная призма с тремя неравными осями). Расстроенная тем, как нелестно Дороти отозвалась о ее навыках кристаллографа, Розалинда уехала из Оксфорда и больше туда не возвращалась.
Фрэнсис узнал о моноклинной пространственной группе ДНК только из открытого отчета о ходе работы, присланного Максу Перуцу из Королевского колледжа в середине февраля. А я в очередном приступе моделирования обнаружил, что для углеводно-фосфатного скелета диаметром 20 А5 оптимальная протяженность витков составляет 34 А5, а именно такой и была протяженность повторяющихся элементов, измеренная для В-формы ДНК. Теперь, когда у нас были данные об обнаруженной Розалиндой пространственной группе, Фрэнсис настаивал на том, что две цепочки должны быть противоположно направлены. Но поначалу я не готов был принять это утверждение, не понимая кристаллографических соображений о симметрии, лежавших в его основе. Я не хотел и думать о направлении цепочек, не узнав, как связываются друг с другом расположенные в центре азотистые основания. Я еще не знал этого, но мою работу с моделями затрудняло то, что структура гуанина и тимина была описана в учебниках неверно. Используя эти неправильные конфигурации, я ненадолго обрадовался, получив схему попарного соединения, напоминающую ту, что наблюдается в кристаллах аденина.
Однако эта схема давала бы витки 17 А5 вокруг оси спирали, а не 34 А5, как следовало из измерений Розалинды. К счастью, Джерри Донохью, специалист по структурной химии из Калтеха, находившийся тогда в годичном отпуске в Кембридже, наставил меня на путь истинный, объяснив, что водороды гуанина и тимина должны находиться в кетонной форме, а не в енольной, предписанной учебниками. Мне понадобился всего день, чтобы задействовать выводы Джерри и поменять положение атомов водорода на моих вырезанных из бумаги моделях тимина и гуанина. Почти сразу же у меня получилось составить пары оснований А-Т и Г-Ц, которые, как мы теперь знаем, и имеются в ДНК. Через полчаса после этого в то субботнее утро в наш кабинет пришел Фрэнсис, которому потребовалось всего несколько минут, чтобы заключить, что симметрия пар азотистых оснований требует, чтобы цепочки были противоположно направлены. Моноклинная пространственная группа Розалинды была настоящим теоретическим предсказанием модели, которую Фрэнсис и я вывели, основываясь только на стереохимии. Двойная спираль определенно была правильной моделью. Нам оставалось только сконструировать сегмент углеродно-фосфатного скелета и измерить координаты атомов, чтобы показать, что все длины и углы связей в нашей модели согласуются с установленными ранее для молекул меньшего размера. Выполнение этой задачи, которая заставила Фрэнсиса впервые за несколько месяцев оторваться от письменного стола, потребовало меньше трех дней. Двойная спираль была готова покорить мир.
Новость о том, что мы, похоже, разгадали структуру ДНК, не могла не заставить Уилкинса схватиться за сердце. Через день после того, как мы проверили соответствующие всем атомам координаты, от него пришло письмо, в котором он сообщал Фрэнсису, что Розалинда покинула Королевский колледж и что теперь он собирается вернуться к работе с ДНК. Вероятно, чтобы смягчить удар, Джон Кендрю, а не Фрэнсис позвонил Морису, чтобы сообщить ему, что мы с Фрэнсисом предложили многообещающую новую версию структуры ДНК. Приехав на следующий день, Морис сразу оценил изящную простоту двойной спирали и согласился, что она, по-видимому, слишком хороша, чтобы быть неправдой. Мы с Фрэнсисом знали, что не выяснили бы структуру ДНК, если бы нам не были известны результаты, полученные в Королевском колледже, и поэтому предложили Морису войти в число соавторов рукописи, которую мы планировали послать в Nature. Он без колебаний отказался, возможно, потому, что не знал, как быть со столь же важным вкладом Розалинды Франклин и Раймонда Гослинга. В номере Nature за 25 апреля 1953 года было опубликовано состоящее из девятисот слов описание нашей модели, а также две новые заметки от двух противоборствующих групп исследователей ДНК из Королевского колледжа. Морис впоследствии писал, что, отказавшись стать нашим третьим соавтором, он совершил самую большую ошибку в своей жизни.
Фрэнсис и я с утренним кофе в руках позируем фотографу в своем кабинете вскоре после публикации нашей заметки в Nature.
Открытие двойной спирали было во всех смыслах достижением из области химии. Алекс Тодд полушутя сказал мне, что мы с Фрэнсисом — хорошие химики-органики, не желая признавать, что серьезную химическую проблему решили люди другой специальности. Но в действительности Фрэнсис и я не стали бы первооткрывателями этой структуры, если бы не промахи в работе химиков, коллег Тодда. В руках Лайнуса были все ключи, нужные для этого открытия, но он непостижимым образом не воспользовался ими той осенью 1952 года. Розалинда Франклин увидела бы двойную спираль первой, если бы надумала принять участие в соревновании по моделированию и если бы лучше умела взаимодействовать с другими
Мы с Фрэнсисом, напротив, были не одни. На этаже над нами работал очень способный Билл Кокран, который перенёс функции Бесселя из теории спиральной дифракции в рабочий лексикон Фрэнсиса, откуда они попали и в мой инструментарий.
Датированные t апреля 1953 года отрывки из дневника, в которых Джерард Роланд Помрат из Фонда Рокфеллера описывает свой визит в Кавендишскую лабораторию.
Что еще важнее, спартанский письменный стол Джерри Донохью находился не дальше двенадцати футов от моего стола и от стола Фрэнсиса в то время, когда его глубокие познания в квантовой химии заставили меня прекратить свои первоначальные попытки сконструировать двойную спираль, в которой подобное притягивалось к подобному при образовании пар оснований (например, А-А, Т-Т). Кавендишская лаборатория привлекала тогда людей мыслящих и готовых спорить. У Лайнуса Полинга в Калтехе была, напротив, химическая теплица, населенная смертными, над которыми витал бог, не видящий нужды выслушивать чужие мнения. Если бы Лайнус провел той осенью всего несколько дней в библиотеках Калтеха и внимательно ознакомился с литературой по ДНК, то весьма вероятно, что ему пришла бы в голову идея пар азотистых оснований, и сегодня он был бы знаменит открытием не только а-спирали, но и двойной спирали.
Почти у всех, кто заходил в наш ставший теперь еще теснее кабинет в Кавендишской лаборатории посмотреть на большую трехмерную модель, сделанную в начале апреля, вызывало восторг то, что эта модель собой подразумевала. Все сомнения в том, что именно ДНК, а не белок является носителем генетической информации, внезапно исчезли. Комплементарность последовательностей азотистых оснований на противолежащих цепочках двойной спирали, судя по всему, вполне соответствовала теоретическому предположению Полинга-Дельбрюка о копировании генов посредством создания комплементарных посредников. Двойные спирали ДНК, существующие в природе, должны состоять из кодирующей цепочки, соединенной водородными связями с комплементарной ей производной цепочкой, синтезированной на ее матрице. На два из трех больших вопросов молекулярной генетики — каково строение ДНК и как она копируется — внезапно нашелся ответ благодаря открытию соединенных водородными связями пар азотистых оснований.
При этом еще предстояло установить, каким образом информация, передаваемая последовательностью четырех азотистых оснований ДНК (аденина, гуанина, тимина и цитозина), определяет порядок аминокислот в полипептидах, производимых отдельными генами. Было известно, что аминокислот двадцать, а азотистых оснований всего четыре, следовательно, группы из нескольких оснований должны были определять, то есть кодировать, одну аминокислоту. Я поначалу считал, что лучшим подходом к изучению языка ДНК должны оказаться не дальнейшие исследования ее структуры, а исследования трехмерной структуры химически близкородственной ей рибонуклеиновой кислоты (РНК). Мое решение оставить ДНК и обратиться к РНК было связано со сделанным уже за несколько лет до этого наблюдением, что полипептидные (белковые) цепочки не собираются непосредственно на содержащих ДНК хромосомах. Вместо этого они синтезируются в цитоплазме на небольших РНК-содержащих частицах, называемых рибосомами. Еще до того, как мы открыли двойную спираль, я предполагал, что наследственная информация, записанная на ДНК, должна передаваться цепочкам РНК с комплементарной последовательностью, которые, в свою очередь, играют роль непосредственных матриц для синтеза полипептидов. В то время я наивно полагал, что аминокислоты связываются со специфическими углублениями, линейно расположенными на поверхности РНК, входящей в состав рибосом.
Следующие три года рентгеноструктурных исследований (первые два в Калтехе, а третий — снова в том же подразделении в английском Кембридже, где ко мне присоединился выучившийся у Полинга и в гарвардской Медицинской школе Алекс Рич), к нашему разочарованию, так и не позволили построить правдоподобную трехмерную модель РНК. Хотя РНК, полученная из разных источников, давала одну и ту же общую дифракционную картину, рассеянный характер этой картины никак не позволял уверенно судить о том, включает дающая его структура одну или две цепочки.
Бесстрашный Альфред Тиссьер над рекой Гильгит на севере Пакистана.
К началу 1956 года я решил, что, когда осенью того года начну преподавать в Гарварде, мне стоит переключиться с рентгеноскопических исследований РНК на биохимические исследования рибосом. Более выполнимую исследовательскую задачу тогда искал также швейцарский биохимик Альфред Тиссьер, в то время изучавший окислительный метаболизм в Институте Мольтено в Кембридже. Он уже имел дело с рибосомами бактерий, и ему понравилась идея заняться изучением механизма их работы по другую сторону Атлантики, в другом Кембридже [14] .
14
В американском городе Кембридж в штате Массачусетс, рядом с Бостоном, находится Гарвардский университет. — Примеч. перев.