Чтение онлайн

на главную

Жанры

Избранные главы курса Радиохимия
Шрифт:

Особенности состояния вещества в поверхностных слоях

Когда мы говорим об избыточной поверхностной энергии на границе раздела фаз, о не скомпенсированных силах поверхностных молекул и атомов и другом их физическом состоянии по сравнению с состоянием молекул и атомов в объеме фаз, то в первую очередь подчеркиваем особенность термодинамического состояния вещества в поверхностных слоях. Эта особенность в каждом отдельном случае проявляется в ненасыщенности определенных физических сил и химических связей, характерных для конденсированных фаз, а для твердых тел поверхностные свойства зависят также и от типа кристаллической решетки. Естественно, свойства поверхности непосредственно отражают природу ионов, атомов и молекул, находящихся на ней.

Для жидкостей и большинства твердых тел когезионные силы выражаются в межмолекулярном

взаимодействии, обусловленном ван-дер-ваальсовыми и водородными связями. Оно отличается от химического взаимодействия отсутствием специфичности и насыщаемости, небольшими энергиями, проявлением на значительно б'oльших расстояниях. (Когезия – взаимодействие, сцепление молекул, атомов, ионов внутри одной фазы – гомогенной части системы. Когезия обусловлена силами притяжения различной природы и определяет существование вещества в конденсированном состоянии). Разрыв таких связей приводит к формированию поверхности, обладающей перечисленными особенностями, т. е. способностью образовывать ван-дер-ваальсовы и водородные связи с молекулами, попадающими на эту поверхность.

При разрушении твердых тел, имеющих атомную кристаллическую решетку (кристаллы углерода, германия, кремния и др.) разрываются ковалентные связи. Реакционная способность атомов на поверхности таких тел чрезвычайно велика. В условиях вакуума они способны образовывать между собой двойные связи, а на воздухе чаще всего реагируют с кислородом, образуя на поверхности окисные пленки.

У ионных кристаллов распределение электрического заряда на поверхности значительно отличается от его распределения в объеме. В результате реакционная способность поверхности повышена к ионам противоположного заряда. Следовательно, существует непосредственная взаимосвязь поверхностных свойств тел с их объемными свойствами. Разные кристаллические структуры резко отличаются по свойствам, в том числе, и по энергии когезионных связей. Прослеживается уменьшение этой энергии в ряду кристаллов:

ковалентные > ионные > металлические > молекулярные (ван-дер-ваальсовы).

Кроме того, химическая и кристаллографическая струкура различных граней одного и того же кристалла может существенно различаться. Более плотная упаковка атомов отвечает меньшей поверхностной энергии Гиббса данной грани и соответственно меньшей ее реакционной способности.

Состав и структура твердых поверхностей зависят от условий их образования и последующей обработки. Например, поверхности оксидов в момент образования проявляют более высокую химическую активность, чем после выдерживания их на воздухе и, там более, при высоких температурах. Значительное влияние на свойства поверхности оксидов оказывает взаимодействие с водой, а также присутствие на поверхности гидроксильных групп особенно в случае смешанных оксидов.

Формирование поверхностного слоя

Так как атомы или молекулы жидкости или твердого тела, находящиеся на поверхности обладают большей энергией, чем внутри конденсированных фаз, поверхностную энергию рассматривают как избыток энергии, приходящейся на единицу поверхности. Атомы и молекулы появляются на поверхности в результате разрыва связей, благодаря чему и обладают большей поверхностной энергией. Увеличение поверхности приводит к возрастанию числа таких поверхностных атомов или молекул в системе. Увеличение поверхности сопровождается затратой работы на разрыв межмолекулярных связей. Следовательно, обратный процесс, т. е. уменьшение поверхности, должен проходить самопроизвольно, поскольку сопровождается уменьшением энергии Гиббса поверхностного слоя. Так как поверхностная энергия равна произведению поверхностного натяжения на площадь поверхности, то она может уменьшаться как за счет сокращения поверхности, так и за счет снижения поверхностного натяжения. Мелко раздробленные твердые и жидкие тела, обладающие большим избытком поверхностной энергии, стремясь уменьшить ее, самопроизвольно агрегируют или коалесцируют (слипаются).

Стремление поверхности уменьшить свою энергию обусловливает и стремление их к снижению поверхностного натяжения. У твердых тел, как правило, поверхностное натяжение снижается вследствие адсорбции других веществ. Адсорбция представляет собой процесс самопроизвольного перераспределения компонентов системы между поверхностным слоем и объемной фазой. Следовательно, адсорбция может происходить в многокомпонентных системах, и при перераспределении компонентов в поверхностный слой предпочтительнее переходит тот компонент, который сильнее уменьшает поверхностное или межфазное натяжение.

В общем случае адсорбция может происходить не только благодаря стремлению поверхностной энергии к уменьшению Она может быть результатом химического взаимодействия компонента с поверхностью вещества (хемосорбция), и тогда поверхностная энергия может даже возрастать на фоне уменьшения энергии всей системы.

Образование и строение двойного электрического слоя

Возникновение двойного электрического слоя на межфазных поверхностях, как и адсорбция, является результатом взаимодействия соприкасающихся фаз благодаря избыточной поверхностной энергии. Стремление гетерогенной системы к уменьшению поверхностной энергии вызывает определенное ориентирование полярных молекул, ионов и электронов в поверхностном слое, вследствие чего соприкасающиеся фазы приобретают заряды противоположного знака, но равной величины. В результате на поверхности возникает двойной электрический слой, обусловливающий различные электроповерхностные явления.

Различают три возможных механизма образования двойного электрического слоя (ДЭС).

ДЭС образуется в результате поверхностной ионизации – перехода ионов или электронов из одной фазы в другую.

1. ДЭС образуется в результате поверхностной ионизации – перехода ионов или электронов из одной фазы в другую.

ДЭС образуется, например, на межфазной поверхности между водой и малорастворимым AgI. При растворении AgI в воду преимущественно переходят катионы Ag+, т. к. они сильнее гидратируются, чем I. В результате поверхность иодида серебра будет иметь некоторый избыток отрицательных ионов иода (потенциалопределяющих ионов), который нейтрализует избыток положительных ионов серебра в прилегающем водном слое (противоионы). Если же в воду добавить хорошо растворимый нитрат серебра, увеличивается электрохимический потенциал ионов серебра. Вследствие этого с поверхности AgI в воду будут переходить преимущественно I и поверхность зарядится положительно (на поверхности образуется избыток Ag+, которые будут играть роль потенциалопределяющих ионов), а I будет выступать в качестве противоионов.

Преимущественный переход тех или иных ионов с поверхности вещества в раствор количественно можно характеризовать изоэлектрической точкой (ИЭТ), т. е. отрицательным логарифмом концентрации потенциалопределяющего иона, при которой суммарный электрический заряд на поверхности равен 0 (в отсутствии посторонних ионов):

ИЭТ+ = – lgC+ или ИЭТ = – lgC, (1.32)

где C+ и C – концентрации потенциалопределяющих ионов в растворе, находящемся в равновесии с малорастворимым электролитом, когда число + и – зарядов на поверхности одинаково. ИЭТ связана с произведением растворимости:

(1.33)

где + и – стехиометрические коэффициенты ионов. Тогда

Например, электрический заряд поверхности в водном растворе равен 0 при [I] = 10– 10,6 М, ПРAgI 10 –16, тогда [Ag+] = 10– 16/10– 10,6 = 10– 5,4 М, или

ИЭТAg+ = 5,4, ИЭТI- = 10,6. Чтобы поверхность зарядилась положительно, необходимо чтобы [Ag+] > 10– 5,4, а [I] < 10– 10,6 моль/л.

Поделиться:
Популярные книги

Я – Орк. Том 2

Лисицин Евгений
2. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 2

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Восход. Солнцев. Книга VII

Скабер Артемий
7. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга VII

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага

Калибр Личности 1

Голд Джон
1. Калибр Личности
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Калибр Личности 1

Король Руси

Ланцов Михаил Алексеевич
2. Иван Московский
Фантастика:
альтернативная история
6.25
рейтинг книги
Король Руси

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Правила Барби

Аллен Селина
4. Элита Нью-Йорка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Правила Барби

Мимик!

Северный Лис
1. Сбой Системы!
Фантастика:
боевая фантастика
5.40
рейтинг книги
Мимик!

Книга пяти колец. Том 3

Зайцев Константин
3. Книга пяти колец
Фантастика:
фэнтези
попаданцы
аниме
5.75
рейтинг книги
Книга пяти колец. Том 3

Защитник. Второй пояс

Игнатов Михаил Павлович
10. Путь
Фантастика:
фэнтези
5.25
рейтинг книги
Защитник. Второй пояс

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс