Избранные труды
Шрифт:
В то же время известное Галилею положение о том, что скорость падающих тел в какой-либо точке зависит только от высоты их падения, наводит его на мысль, что раз скорости тел в точках А и В, расположенных на одной горизонтали, равны, то они должны быть и вообще равны на
Конец страницы 584
Начало страницы 585
отрезках СА и СВ. Он проверяет это предположение на опыте, и действительно оказывается, что отношение времен падения по всей наклонной и по всей вертикали равно отношению длин наклонной и вертикали. Отсюда в соответствии со вторым определением можно сделать вывод, что скорости тел, падающих по наклонной и по вертикали, равны.
Таким образом, следуя рассуждению Галилея, мы получили два противоречащих положения:
«Скорости тел, падающих по СА и СВ, равны».
«Скорости тел, падающих по СА и СВ, не равны».
Причину
Причина этого противоречия заключена в том, что понятие скорости, сложившееся из сопоставления равномерных движений и однозначно характеризовавшее эти движения, уже не подходит для сопоставления и однозначной характеристики движений неравномерных.
Подобные логические противоречия, или антиномии, можно часто встретить в истории науки. Оба положения такого противоречия в равной мере истинны и неистинны. Истинны в том смысле, что они оба действительны, если мы исходим из существовавшего в то время определенного строения исходного понятия. Неистинны в том смысле, что это строение понятия уже не может дать однозначной характеристики новых исследуемых явлений.
Выявление подобного противоречия наталкивает исследователя на мысль, что он не учел в понятии какого-то обстоятельства, какого-то свойства исследуемого явления и заставляет искать это обстоятельство или свойство, а затем в соответствии с ним менять всю систему понятий, относящихся к исследуемой области явлений.
Часто противоречие разрешается тем, что рассматриваемое понятие подводится под новое, более общее или более узкое понятие и рассматривается с точки зрения признаков последнего. Так поступает и Галилей. Сначала он рассматривал скорость как величину или, точнее, как математическое отношение, а после выявления противоречия, стремясь объяснить его и «снять», он начинает рассматривать скорость как
Конец страницы 585
Начало страницы 586
переменную величину или переменное математическое отношение. Это было облегчено тем, что представление о переменных величинах к тому времени уже сформировалось (см., например, [Гуковский, 1947, с. 177-180, 469-474; Hall, 1954, с. 80-85]).
Галилей ставит вопрос о законе изменения этой величины в случае свободного падения тел на землю и предполагает, что оно происходит по «простому» закону v = аt, подобному закону изменения пути в равномерном движении, и таким образом находит новую величину (a — ускорение), однозначно характеризующую свободное падение тел. Закон, связывающий движение свободно падающего тела с движением эталона (стрелка часов), принимает вид:
s = аt2/2 (4)
Величина a характеризует «внутреннюю определенность» или качество каждого отдельного равномерно-ускоренного движения.
Заметим, кстати, что дальнейшее усложнение строения и, соответственно, формы закона, связывающего исследуемое движение с движением эталона, как всегда, обусловлено усложнением степени опосредствования, усложнением опосредствующих отношений между исследуемым движением и движением эталона. Но если раньше опосредствующее сопоставление носило предметно-практический характер, то теперь в формуле (4) последняя ступень опосредствования носит абстрактно-логический, формальный характер. Величина v, полученная из математического отношения пути к времени и поэтому непосредственно недоступная чувствам, сопоставляется с движением эталона чисто умозрительным, спекулятивным путем, посредством применения уже выработанной связи v = at, подобной s = vt. Элементы а и t выступают в качестве абстракций, с помощью которых мы формально анализируем логически-опосредствованно образованную абстракцию v. (Мы ограничимся этим замечанием, так как в нашу задачу не входит исследование специфики чисто формальных процессов мышления.)
Выявление нового свойства в процессах движения заставляет Галилея пересмотреть все относящиеся к ним понятия. Так, например, Галилей дает следующее определение: «Движением равномерным или единообразным я называю такое, при котором расстояния, проходимые движущимся телом в любые равные промежутки времени, равны между собою.
Пояснение. К существовавшему до сего времени определению (которое называло движение равномерным просто при равных расстояниях, проходимых в равные промежутки времени) мы прибавили слово «любые», обозначая тем какие угодно равные промежутки времени, так как возможно, что в некоторые определенные промежутки времени будут пройдены равные расстояния, в то время как в равные же, но меньшие
Конец страницы 586
Начало страницы 587
части этих промежутков пройденные расстояния не будут равны» [Галилей, 1934, с. 282-283].
Исследование неравномерных движений показывает, что скорость на каком-либо отрезке пути этого движения иная, чем на соседнем. Но и на протяжении первого отрезка скорость непостоянна. Этот отрезок содержит в себе несколько меньших отрезков, на каждом из которых скорость имеет свою особую величину. И на протяжении любого из этих меньших отрезков скорость также не остается постоянной. Продолжение такого деления — а к нему исследователи должны были обязательно прийти, сознательно или бессознательно, — приводит их к необходимости ввести понятие скорость в точке. Эта необходимость проявилась уже тогда, когда, исследуя ускоренные движения, стремясь свести их к равномерным, стали говорить о конечной скорости какого-либо ускоренного движения, то есть о скорости, достигнутой в последней точке рассматриваемого отрезка пути (см. [Гуковский, 1947, с. 177-180, 469-474; Wilson, 1956, с. 121]). Однако вплоть до возникновения дифференциального исчисления это и подобные ему понятия о мгновенных, или «точечных», характеристиках не могли стать «рабочими», то есть действующими.
Дифференциальное исчисление, развитое Ньютоном и Лейбницем, дало правила получения бесконечно малых характеристик из чувственно воспринимаемых и измеряемых отношений, установило правила оперирования с подобными характеристиками. В результате этого понятие скорости расщепилось на два понятия: средняя скорость и мгновенная скорость. Эти понятия имеют не только различное содержание, но и различное строение. Действительно, они измеряются различным образом и выражаются в различных формулах. Первое предполагает лишь эмпирически измеренные величины времени и пути, пройденного телом, и определяется как их простое алгебраическое или арифметическое отношение. Закон движения для этого понятия безразличен, или, вернее, оно все движения сводит к движению, подчиняющемуся закону v = const., где v определяется из математического отношения любых соответствующих друг другу s и t. Второе, то есть понятие мгновенной скорости, не может быть найдено и вообще не имеет практического смысла, если мы, кроме эмпирических данных s и t, не имеем еще закона исследуемого движения, выраженного в формуле или в графике. Величина мгновенной скорости в общем случае выражается в виде функции и определяется с помощью операции дифференцирования, производимой над этой формулой. Только для равномерных движений форма выражения мгновенной скорости совпадает с формой выражения средней скорости, для остальных же движений они не совпадают.
Таким образом, процесс расщепления понятия складывается из двух весьма различных частей: 1) получение пары противоречащих
Конец страницы 587
Начало страницы 588
положений типа «А есть В, А не есть В»; 2) образование новых понятий и изменение старых. Как мы видели, вторая часть этого процесса обособлена и зависит от характера рассматриваемых объектов и степени их познания. Тем не менее, взятый в целом, процесс дифференциации понятий имеет постоянное строение и является одним из наиболее общих процессов развития понятий. Лишь только какое-нибудь свойство, считавшееся до того простым и абсолютно сходным в ряде объектов мысли, начинают рассматривать с новой точки зрения, т.е. в других условиях и при других отношениях между предметами и явлениями, как оказывается, что это свойство не абсолютно сходно во всех рассматриваемых объектах, что оно наряду со сходными моментами несет в себе различия. Оказывается, что абстракция, отражавшая общее сходное свойство этих объектов мысли, недостаточно точна, поверхностна и должна расщепиться на ряд новых абстракций, отражающих эти различия.