Избранные труды
Шрифт:
Исключительно сложным делом, требующим особых изощренных приемов и способов исследования, является также построение «клеточки» теоретического изображения органического объекта. Анализируя логическую структуру «Капитала» К.Маркса, А.А.Зиновьев описал ряд общих признаков «клеточки», знание которых дает возможность ответить на вопрос, является та или иная структура «клеточкой» заданного объекта или нет [Зиновьев, 1954]. Но этих признаков еще недостаточно для построения самой структуры «клеточки». Чтобы сконструировать ее, нужны еще какие-то дополнительные процедуры.
Точно так же особые приемы и методы анализа нужны для определения тех способов рассуждения, которые зададут нам механизм и правила развертывания «клеточки» в более сложные структуры,
Конец страницы 181
Начало страницы 182
изображающие
И к какому бы из этих направлений исследования мы ни обратились, всюду главной задачей и, можно сказать, «узлом» всех проблем оказывается выявление и воспроизведение связей объекта. Но решение ее очень затрудняется из-за постоянного смешения понятий
«отношение» и «связь»
Понятие связи кажется интуитивно ясным, особенно когда мы мыслим его конкретными примерами, как, скажем, связью причины и ее следствий, или образом двух объектов, скрепленных стержнем. В этом же интуитивном смысле употреблялось оно в бэконовско-миллевской логической традиции и не вызывало особых возражений. Но сейчас все больше и больше обнаруживается, что это интуитивное понимание не может нас удовлетворить, что его уже недостаточно, так как происходит постоянное смешение структурных связей объектов, с одной стороны, с формальными связками следования в рассуждениях, а с другой — с отношениями. Имея дело с суждением «Петр Первый выше Наполеона», еще сравнительно легко угадать, что его содержанием является отношение, а не связь, но если взять чуть более сложные суждения, например «Иван брат Петра» или «А часть В», то здесь уже не так просто разобраться, с чем именно мы имеем дело — с отношением или связью. Поэтому в логической традиции второй половины XIX столетия и первой половины XX высказывания «А — причина В» и «А брат В» рассматривались вместе, как неотличимые друг от друга суждения об отношениях [Поварнин, 1916]. Это, естественно, приводило и к соответствующему теоретическому осознанию самих категорий «отношения» и «связи»: первое рассматривалось как родовое понятие второго, а интуитивно угадываемое различие между ними считалось лежащим за пределами логики.
Реальные попытки логического разделения «отношения» и «связи» начались сравнительно недавно. Но эти попытки, с одной стороны, так и не дали действительно существенных теоретических результатов, а с другой, даже если бы они были успешными, все равно не могли привести к выделению общего понятия о связи, так как с самого начала были направлены на частные случаи.
Первая фундаментальная попытка выделить общие критерии для различения знаний об отношениях и знаний о связях и соответственно самих отношений и связей была предпринята в 1955-1960 годах А.А.Зиновьевым.
По его мнению, решение этой проблемы нельзя было получить, пытаясь непосредственно определить специфику самой связи: на этом
Конец страницы 182
Начало страницы 183
пути мы не движемся дальше тавтологических утверждений, вроде «связь есть связность, взаимообусловленность», «высказывания о связи — это те, в которых фиксируются связи» и т.п. Поэтому Зиновьев начал свое исследование с другого конца — с анализа логической структуры знаний о связях и правил их формального преобразования в рассуждениях. Выделив среди различных положений науки, с одной стороны, бесспорные примеры высказываний о связях, как, скажем, «с изменением А меняется В», «А — причина В» и т.п., а с другой, типичные высказывания об отношениях, как, например, «А больше В», он сравнил способы формальной переработки тех и других в иные положения и обнаружил здесь принципиальную разницу. Оказалось, что выделенные им высказывания о связях подчиняются иным логическим правилам вывода, нежели высказывания об отношениях. Если несколько упростить дело, то это можно описать так: для высказываний об отношениях действует схема формальной переработки «Если А > В, В > С, то А > С», а для высказываний о связях эта схема уже неверна — из положений «А вызывает В» и «В вызывает С» не следует с необходимостью «А вызывает С», хотя в некоторых случаях это и может иметь место [Зиновьев, 1959 а, с. 113-124].
Доказав таким путем особую логическую природу знаний о связях, А.А.Зиновьев попытался затем охарактеризовать сами связи как особое содержание этих знаний. «Определив высказывания о связях как особый тип высказываний, можно определить сами связи как то, что отображается высказываниями этого рода», — писал он [Зиновьев, 1960 с, с. 59]. Но чтобы преодолеть обычную здесь тавтологию — связи есть то, что выражается в знаниях о связи, — нужно было, очевидно, построить особые изображения для самих связей, отличные от форм их фиксации в высказываниях.
Если мы обратимся к материалу современной науки, то увидим, что в ней существует ряд различных способов изображения связей. Наиболее известными и, можно сказать, популярными являются изображения в виде черточек, связывающих между собой знаки элементов, как, например, в структурных формулах химии. Другой формой изображения связей служат сейчас «линии» каналов передачи сигналов между блоками информационных или каких-либо иных машин. Особые формы изображения связей — графики, таблицы и некоторые элементы в физических или инженерных моделях.
Но все эти широко распространенные в современной науке формы графического изображения связей имели тот общий недостаток, что они никак не обнаруживали свое родство с высказываниями о связи и не показывали тех процедур анализа и построения самих высказываний, которые надо было выявить, чтобы осуществить описанную выше программу логических исследований. Поэтому их пришлось отбросить и
Конец страницы 183
Начало страницы 184
искать среди всех возможных форм изображения связей те, которые могли бы как-то раскрыть тайну выделения связи как особого объективного содержания. К счастью, оказалось, что в предшествующем развитии логики такая форма была уже найдена и даже представлена в схематической таблице. Это были схемы так называемого индуктивного или экспериментального выявления причинной связи Бэкона—Гершеля—Милля [Асмус, 1947, с. 260-285; Минто, 1901, с. 165-221].
Они пришли в логику вместе с наукой нового времени и были обобщением приемов практической исследовательской работы лаборатории XVII и XVIII столетий; это были методы наблюдений, проводившихся с целью определения причинной связи и зависимости.
Одним из важнейших среди них был прием так называемого «единственного различия». Принцип его сам Дж.Ст.Милль и его последователи выражали так. Если после введения какого-либо фактора появляется или после удаления его исчезает известное явление, причем мы не вводим и не удаляем никакого другого обстоятельства, которое могло бы иметь в данном случае влияние, и не производим никакого изменения среди первоначальных условий явления, то указанный фактор и составляет причину явления [Минто, 1901, с. 207]. Позднее этот принцип стали изображать в виде схемы умозаключения:
Случаи | Наблюдаемые обстоятельства | Явление, причина которого должна быть установлена |
1 | ABCDE | а |
2 | BCDE | — |
Вывод: причина явления а есть обстоятельство А [Асмус, 1947, с. 268-269].
Эта схема накладывается на реальные исследуемые ситуации: если «поведение» двух каких-либо объектов, факторов или явлений в ней соответствовало изображенному на схеме, то мы могли утверждать, что между ними есть причинная связь. В этой схеме индуктивного вывода А.А.Зиновьев нашел то, что ему было нужно: она удовлетворяла всем поставленным выше требованиям — была особым изображением содержания знания о связи, отличным от формы самого знания, и вместе с тем, в противоположность всем другим видам изображений, отчетливо показывала сам способ построения знания.