Избранные труды
Шрифт:
Чтобы избавиться от некоторых недостатков традиционных схем. Зиновьев ввел ряд новых, формально точно определенных понятий и их специальных знаковых изображений. Основным стало знаковое изобра-
Конец страницы 184
Начало страницы 185
жение «объекта сопоставления», куда вошли как знаки самих реальных «предметов» — а, b, с..., так и знаки выделенных в них свойств или признаков — Q, R, Р... В целом «объект» изображался знаковыми группами вида (Qa), (Rb), (Pb) и т.д. Отсутствие «объекта» рассматривалось тоже как определенный объект и изображалось знаковой группой вида (—Qa). Фиксация «объекта» в соответствующем знании выражалась в знаковой группе «Qa» или «—Qa».
После того как были выведены эти знаковые изображения и соответствующие им понятия, приведенную выше схему индуктивного сопоставления стало возможным изобразить в виде таблицы:
I | (Qa) | (Rb) |
II | (-Qa) | (-Rb) |
Первая
На основе этих представлений и знаковых изображений А.А.Зиновьев построил математико-логическое исчисление связей, определил условия логической истинности различных сложных высказываний о связях, построенных по определенным правилам из более простых высказываний. И эта работа, повторим снова, является наиболее принципиальной и фундаментальной из всех, выполненных к настоящему времени по проблемам логического определения связи.
Но, несмотря на все свои достоинства, она имеет один существенный недостаток: не может охватить всех существующих в настоящее время и широко употребляемых в науке понятий связи; и даже, наверное, можно сказать еще резче: введенное в ней понятие связи вообще не соответствует большинству из этих употреблений, и в частности всем знаниям о связях объектов и элементов в целом, всем кинематическим и механическим представлениям связи и т.п.
Конец страницы 185
Начало страницы 186
На наш взгляд, причина этого заключается в основаниях метода анализа — они оказались слишком узкими и, может быть, даже просто неправильными. В обоснование этого утверждения мы хотим рассмотреть
основные противоречия существующего понятия связи
Среди разнообразных знаний о связях, встречающихся в современной научной литературе, можно выделить два полярных типа: один фиксирует зависимости или связи между свойствами, признаками объектов, другой — связи между самими объектами, рассматриваемыми в качестве элементов целого. Характерным примером знания первого типа является аналитическая форма выражения какого-либо «закона», скажем закона Бойля—Мариотта о зависимости между объемом и давлением газа: pV = const. Примером знания второго типа может служить описание структурной формулы какого-либо химического соединения, скажем, в простейшем случае вида: Са(ОН)2. И если мы возьмем знания о связях второго типа, то оказывается, что как способы их построения, так и способы формального оперирования с ними совершенно не соответствуют тому, что А.А.Зиновьев описал в понятиях «объектов сопоставления», ситуаций и наборов. Его понятие построено таким образом, что не может охватить и выразить связи между элементами реальной структуры объектов, элементами, получаемыми путем разложения этой структуры. И в этом мы видим его первое основное противоречие. Но тогда из этого утверждения должен следовать еще и вопрос: каким образом мы выявляем связи структуры самих объектов?
Из этого же утверждения мы можем вывести и второе противоречие существующего понятия связи. Дело в том, что «объекты», фигурирующие в таблицах ситуации сопоставления, являются на самом деле не объектами, а предметами знания, но предметы являются не чем иным, как связками замещения операционно выделенных содержаний знаками, и рассматривать их нужно именно таким образом, т.е. учитывая многие плоскости знакового замещения и анализируя, что нового вносит в процесс выявления содержания знания каждая из них. То, что в существующем понятии связи не учитывается эта сторона дела, является важнейшим его дефектом, и именно из-за этого в нем не удается «схватить» реальные языковые средства и особенности содержания различных научных высказываний о связях.
Дело в том, что содержание знаний о связи задается не только тем, какие сопоставления осуществляются в плоскости исходных объектов, но также и тем, в каких знаковых средствах фиксируется выявленное таким образом содержание, и что именно, в соответствии с этим, становится объектом последующих сопоставлений. Подавляющее большинство современных знаний о связях имеет своим содержанием сопоставления, в
Конец страницы 186
Начало страницы 187
которых участвуют, кроме самих объектов, разлагаемых на части и синтезируемых из этих частей, еще знаки разного типа, лежащие в различных плоскостях замещения и «снимающие» в себе разное содержание. Например, в современной химии это, кроме самих реагирующих веществ и описаний их меняющихся свойств, еще формулы состава, структурные формулы, физико-химические и физические модели атомов и молекул вещества. И сопоставление, выделяющее в объектах новое содержание, в частности их структуру, идет все время за счет переходов от одних знаковых средств и плоскостей замещения к другим. Как бы «в разрезе» вся эта система замещений и происходящих на его основе сопоставлений изображена на схеме 13.
Надо специально сказать, что появление особых изображений состава и структуры химических соединений или физико-химических и физических моделей вещества кардинальным образом меняет характер рассуждений и выводов в химии. Меняется сама логика мышления, логические правила содержательного и формального решения задач. В частности, меняются способы построения высказываний о связях: чтобы получить знания о связях на основе уже имеющихся структурных формул, нужны совсем иные схемы сопоставлений и вообще процедур, нежели те, к которым мы должны были прибегать, получая знания о связях на основе формул состава. И то же самое происходит во всех других науках по мере развития их знаковых средств и появления новых плоскостей замещения.
Поэтому вполне естественно, что логическая теория знаний о связях, не учитывающая этих моментов, оказывается очень ограниченной и не может охватить не только всех, но даже самых главных типов этих знаний. Чтобы построить действительно общую логическую теорию высказываний о связях, нужен принципиально иной подход к проблеме, иные логические основания, и в частности учитывающие, с одной стороны, эмпирическое различение связей между объектами и связей между признаками, а с другой — многоплоскостное строение всякого знания. Реализуя этот принцип, мы хотим рассмотреть
«логическое окружение» понятии связи
Анализ истории мышления показывает, что все исходные понятия связи возникают на пересечении ряда способов анализа объектов и
Конец страницы 187
Начало страницы 188
поэтому объединяют и снимают в себе разные группы мыслительных процедур. Чтобы показать сам способ рассуждения при анализе их, мы разберем упрощенную комбинацию из нескольких таких мыслительных процедур.
Первая — чисто эмпирическое выявление сначала соотношения, а потом зависимости двух свойств-параметров какого-либо объекта или явления. Простейшая иллюстрация этой линии исследования объектов — выявление зависимости между давлением и объемом газа в полемике Р.Бойля против Линуса [Розенбергер, 1937, ч. II, с. 136]. Бойлю нужно было убедить Линуса в существовании сопротивления воздуха. Он взял изогнутую в виде сифона стеклянную трубку с запаянным коротким коленом и наполнил ее через длинное (открытое) колено ртутью. По мере приливання ртути воздух в коротком колене сжимался, но продолжал уравновешивать все больший и больший столб ртути. Чтобы охарактеризовать «сопротивление» воздуха, Бойлю нужно было сопоставить уменьшающиеся объемы воздуха и соответствующие избытки давления в длинном колене. Самой «естественной» формой фиксации соотношения объемов и избытков давления была таблица
p |
V |
Лишь через некоторое время ученик Бойля — Ричард Тоунлей — заметил, что произведение давления на объем остается примерно постоянным, выделил таким образом инвариант, и это позволило зафиксировать в аналитической форме формулы (и функции) саму зависимость между давлением и объемом
p1V1= p2V2= p3V3= ... = PV = const; p = с/V, V = c/p.