Измерение мира. Календари, меры длины и математика
Шрифт:
Для измерения площадей земельных участков использовались меры, связанные с человеческим трудом, например время, необходимое для обработки. Также меры площади пахотной земли, например испанская фанега, характеризовали количество зерна, которое можно было на ней вырастить. Подобные единицы не были постоянными и зависели от множества факторов.
Количество зерна традиционно измерялось по объему, и единицей измерения считался сосуд, например та же самая испанская фанега. Применение подобных мер могло вызывать конфликты: зерно можно отмерять одним и тем же измерительным инструментом либо по край, либо с горкой.
Большинству из нас привычна метрическая система мер. Мы измеряем
Одновременно мы используем единицы из других систем: время мы отсчитываем в минутах, но придаем особое значение интервалу не в 10, а в 60 минут (этот интервал имеет свое название — час), а минута, в свою очередь, делится на 60 секунд. Есть свои единицы измерения для перчаток или обуви, которые выражаются не в сантиметрах или других единицах, производных от метра. Даже сегодня мы используем единицы из разных систем мер, и все они помогают нам описать окружающий мир.
В современных технологиях используются единицы измерения, которые не являются частью метрической системы мер. Классический пример — форматы бумаги в системе DIN. Наиболее популярным из них является DIN А4 (210 x 297 мм).
Эта система мер, используемая в большинстве стран мира, основана на немецком стандарте, введенном Deutsches Institut fur Normung (Немецким институтом по стандартизации) в 1922 году — стандарте DIN, который затем стал частью стандарта ISO (Международной организации по стандартизации). С форматами бумаги стандарта DIN работает большинство цифровых печатных машин и фотокопировальных аппаратов для частного и промышленного использования. Этот формат бумаги был создан с учетом трех условий: во-первых, соотношение большей стороны к меньшей у листов разного размера должно быть одинаковым; во-вторых, листы последовательных форматов по площади должны отличаться друг от друга ровно в два раза, так, что если разрезать лист пополам, то получится два одинаковых листа следующего формата; в-третьих, площадь листа наибольшего формата, А0, должна составлять ровно 1 м2.
Формат листа бумаги, соотношение сторон которого при складывании пополам остается неизменным.
Как найти искомое соотношение? Рассмотрим прямоугольный лист бумаги со сторонами а и b соответственно. Лист бумаги большего формата должен иметь стороны 2а и b. Чтобы соотношение длин его сторон было прежним, должно выполняться условие:
Следовательно:
Иными словами, соотношение длины большей стороны к меньшей должно равняться 2. Если мы разрежем пополам лист бумаги, удовлетворяющий этому условию, то указанное соотношение сторон будет выполняться и для двух полученных листов.
Зная размеры листа формата А0, несложно определить размеры листа следующего формата (А1): достаточно разделить его большую сторону пополам и принять длину большей стороны листа А1 равной длине меньшей стороны листа А0. Если мы выполним аналогичные действия для листа А1, точнее, разделим его большую сторону пополам и оставим меньшую сторону неизменной, то получим лист формата А2 и так далее, как показано на следующем рисунке.
Размеры листов бумаги формата DIN.
* * *
РАСЧЕТ РАЗМЕРОВ ЛИСТА ФОРМАТА А0
Прямоугольник со сторонами а и b должен иметь площадь 1 м2, при этом длины его сторон должны удовлетворять соотношению b = 2·а:
Зная а, мы с легкостью вычислим b:
Таким образом, лист бумаги формата DIN А0 имеет следующие размеры:
* * *
Измерения могут быть прямыми, например измерение температуры термометром, и косвенными — в этом случае для получения результата требуется несколько измерений. Если мы проводим измерения с помощью специального измерительного инструмента, то речь идет о прямых измерениях. В таких случаях мы получаем результат, сравнивая измеряемую величину с другой величиной, имеющей ту же физическую природу. Это происходит, к примеру, при сравнении длины объекта с длиной размеченного эталона.
Методы измерений — это приемы, используемые для измерения величины: подсчет, оценка, использование формул или применение измерительных инструментов.
Большинство людей ассоциируют с измерением именно применение инструментов — линеек, рулеток, мерных сосудов, термометров, часов, хронометров и так далее.
Иногда прямое измерение невозможно: во-первых, существуют величины, которые нельзя измерить путем сравнения с эталоном той же природы, во-вторых, рассматриваемая величина может быть слишком мала или слишком велика, и у нас не найдется подходящего инструмента для ее измерения. В таких ситуациях следует прибегнуть к косвенному измерению: провести измерение с помощью какой-то другой величины и вычислить искомое значение на ее основе.
При использовании формул и отношений для определения новых мер особую роль играют треугольники, что подтверждает и история математики. Всем известна теорема Пифагора со множеством доказательств, найденных разными культурами в разное время и в разных регионах: в Египте, Греции, Африке, Китае, Индии и Европе. Также особую роль треугольников подчеркивают отношение подобия треугольников и теорема Фалеса, которые позволяют проводить косвенные измерения. Кроме того, треугольник является основным элементом тригонометрии. Эта математическая дисциплина, на протяжении многих веков связанная с астрономией, описывает основы расчетов, необходимых для астрономических измерений. Тригонометрия лежит и в основе триангуляции — метода измерения дуг земных меридианов (мы расскажем об этом в следующих главах).
Рассмотрим косвенное измерение на примере подобия фигур, в частности прямоугольных треугольников. Допустим, что мы хотим измерить высоту очень высокой башни или здания. По какой-то причине мы не можем подняться на его вершину, чтобы произвести прямые измерения, опустив, к примеру, веревку или рулетку до самой земли. Но мы можем определить высоту башни с помощью простого косвенного метода.
Поставим возле башни вертикально расположенный предмет (шест или посох) и измерим его высоту. Если теперь мы одновременно измерим длину тени этого предмета и длину тени башни, то сможем узнать ее высоту. Учитывая, что Солнце находится на огромном расстоянии от Земли (примерно 150000000 км), солнечные лучи, освещающие башню, можно считать параллельными. Соотношение между высотой и тенью объекта будет тем же, что и соотношение между высотой и тенью башни, так как образуются два подобных треугольника (это прямоугольные треугольники с одинаковыми углами). Следовательно, достаточно найти одно из этих соотношений.