Чтение онлайн

на главную - закладки

Жанры

Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Шрифт:
Контрольные вопросы и задания

1. Чем отличаются строго стационарные процессы от стационарных процессов в широком смысле?

2. Может ли стационарный процесс иметь тренд или какие-либо строго периодические колебания?

3. Чем нестационарный процесс отличается от стационарного? Может ли у нестационарного процесса быть тренд?

4. Если мы пришли к выводу о нестационарности временного ряда, что можно сказать об устойчивости его средней, дисперсии и автоковариации? Дайте определение средней, дисперсии и автоковариации.

Глава 2

Метод наименьших квадратов и решение уравнения регрессии в Excel

2.1. Характеристика метода наименьших квадратов и его применение при прогнозировании курса доллара

Как

выяснено в главе 1, динамика курса валют представляет собой временной ряд, имеющий не только тренд, но и случайную компоненту, поэтому в качестве метода оценки параметров прогностической модели, как правило, используется регрессионный анализ. Как известно, задачей регрессионного анализа является определение аналитического выражения (математической формулы), аппроксимирующего связь между зависимой переменной Y (ее называют также результативным признаком) и независимыми (их называют также факторными) переменными Х1, Х2,…, Хn. При этом форма связи результативного признака Y с факторами Х1, Х2,…, Хn, либо с одним фактором X получила название уравнения регрессии. В качестве метода аппроксимации (приближения) в уравнении регрессии используется метод наименьших квадратов (МНК), который минимизирует сумму квадратов отклонений фактических значений Y от его предсказываемых значений, рассчитанных по определенной математической формуле. Причем решение уравнения регрессии относительно интересующих нас переменных у (курс доллара) и х (время или порядковый номер месяца), по сути, заключается в подборе прямой линии к совокупности пар данных, характеризующих динамику курса доллара и соответствующие порядковые номера месяцев. При этом линию, которая лучше всего подойдет к этим данным, выбирают так, чтобы сумма квадратов значений вертикальных отклонений зависимой переменной (фактического курса доллара) от линии, рассчитанной по уравнению регрессии (предсказанный курс доллара), была минимальной.

Математические подробности оценки параметров уравнения регрессии методом наименьших квадратов

В самом общем виде формулу МНК можно представить следующим образом:

Для отыскания параметров а и b, при которых функция j(a, b) принимает минимальное значение, необходимо найти частные производные по каждому из параметров этой функции а и b и приравнять их к нулю. Если e2 обозначить через S, то в результате мы получим систему нормальных уравнений МНК для прямой:

Преобразовав систему уравнений (2.1.2), получим:

Решив систему уравнений (2.1.3) методом последовательного исключения переменных, найдем следующие оценки параметров:

С помощью оцененного таким образом уравнения регрессии можно предсказать, как в среднем изменится признак Y в результате роста факторов Х1, Х2,…..Xt, (или одного фактора X).

В зависимости от того, какая математическая функция используется для прогнозирования результирующей переменной У, различают линейную и нелинейную регрессию. При этом в основе линейной регрессии лежит уравнение линейного тренда, а в основе нелинейной регрессии — целое семейство уравнений нелинейных трендов (полиномиальный второй, третьей и прочих степеней, степенной, экспоненциальный и др.). В случае если результативный признак Y зависит от одного фактора Z, то такое уравнение регрессии называется парным, а если Y зависит от нескольких факторов Х1, Х2,…. Xt, — то уравнением множественной регрессии.

Практически в любом учебнике по общей теории статистики и по эконометрике можно более подробно познакомиться со спецификой уравнений регрессии [2] . Существуют формулы, по которым можно самостоятельно найти параметры как уравнения линейной регрессии, так и различных видов уравнений нелинейной регрессии. Однако с внедрением в широкую практику компьютеров и соответствующих компьютерных программ уже нет необходимости оценивать параметры уравнения регрессии вручную, тем более что это процесс довольно трудоемкий.

2

См., например: Эконометрика: учебник / под ред. И.И. Елисеевой. 2-е изд., испр. и доп. М.: Финансы и статистика, 2006. С. 43—132.

2.2. Решение уравнения регрессии в Excel с учетом фактора времени. Интерпретация и оценка значимости полученных параметров

Рассмотрим алгоритм решения уравнения регрессии с применением соответствующих вычислительных программ. При этом работу с уравнением регрессии в компьютерных программах можно разделить на три этапа.

На первом, подготовительном этапе необходимо определиться с набором факторов, которые необходимо включить в уравнение регрессии, а также с его аналитической формой, что в ряде случаев требует предварительной обработки данных. Например, в случае выбора степенного уравнения регрессии вместо исходных данных нужно взять их логарифмы.

Второй этап состоит из собственно решения уравнения регрессии и нахождения его параметров.

На третьем этапе проводится оценка и тестирование общего качества уравнения регрессии, проверка статистической значимости каждого из коэффициентов регрессии, определяются их доверительные интервалы, а также принимается окончательное решение об адекватности или неадекватности полученного уравнения регрессии.

Как известно, одним из наиболее распространенных способов определения тренда в динамике курса валюты является построение его зависимости от фактора времени Т. Так, если в качестве зависимой переменной Умы возьмем ежемесячный курс доллара, а в качестве независимой переменной Т — время (в данном случае порядковые номера месяцев начиная с июня 1992 г.), то у нас получится следующее уравнение парной линейной регрессии:

где а — свободный член уравнения регрессии;

b — линейный коэффициент регрессии, показывающий, как изменение величины независимой переменной (фактора) Т в среднем способствует изменению зависимой переменной (результативного признака) Y,

Трасч расчетное значение результативного признака, вычисляемое по формуле 2.2.

Минимизируем сумму квадратов отклонений (остатков) Yфакт от Ypасч, т. е. фактических значений курса доллара от его расчетных значений. В результате формулу МНК (2.1.1) для линейной регрессии можно представить в следующем виде:

Уравнение 2.3, в принципе, можно решить самостоятельно, если найти его параметры согласно формулам (2.1.4) и (2.1.5), но в целях ускорения этого процесса будем его решать с помощью Пакета анализа Excel. Кстати, желающие лучше усвоить суть МНК могут сначала самостоятельно в «ручном режиме» решить уравнение регрессии, а затем сверить свои результаты с теми, что мы получим в Excel.

Чтобы подготовить исходные данные к решению уравнения регрессии, разместим в Excel два столбца исходных данных. В первом столбце, который озаглавим Time, поместим порядковые номера месяцев, начиная с июня 1992 г. (с номером 1) и кончая апрелем 2010 г. (с номером 215). Во втором столбце, который озаглавим USDollar, поместим данные по курсу доллара на конец месяца, начиная с июня 1992 г. и заканчивая апрелем 2010 г. [3] Таким образом, столбец Time представляет собой независимую переменную, которая в формуле (2.2) обозначена символом Т, а столбец USDollar является зависимой переменной Yфакt. Далее переходим к решению уравнения регрессии в Пакете анализа Excel согласно алгоритму действий № 3.

3

Последние данные, имевшиеся у автора на тот момент, когда писались эти строки.

Поделиться:
Популярные книги

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Измена. Я отомщу тебе, предатель

Вин Аманда
1. Измены
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Измена. Я отомщу тебе, предатель

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Ведьма

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.54
рейтинг книги
Ведьма

Рядовой. Назад в СССР. Книга 1

Гаусс Максим
1. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Рядовой. Назад в СССР. Книга 1

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Подчинись мне

Сова Анастасия
1. Абрамовы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Подчинись мне