Клад острова Морица
Шрифт:
Однако только длительные комплексные исследования могут дать первые практические результаты. И если дальнейшие эксперименты подтвердят надежды, в работу должны включиться специалисты многих смежных областей.
…Чудес в этой маленькой комнате, уставленной стеллажами, по мнению ее хозяев, нет никаких. На полках— от пола до потолка — сотни колб. В каждой, словно тающий весенний снег, — комки белой, желтоватой или бледно-зеленой ноздреватой массы. Это культуры растительных тканей, то есть колонии клеток, которые были взяты из листьев, корней, стеблей, плодов различных растений и теперь искусственно выращиваются на желеобразном агаре, сдобренном сахаром,
В углу комнаты мерно постукивает качалка, колышет в колбах, установленных на ее платформе, мутную жидкость. Здесь тоже развиваются и размножаются клетки, но в питательном растворе, в жидкой среде.
— На этой полке у нас растет раувольфия змеиная, на этой, в основном, женьшень, — рассказывает профессор И. В. Грушвицкий.
Разглядываю на стеллаже колбу за колбой. И вдруг — странное чувство: будто вчитался в строки фантастической повести и неожиданно, без перехода и подготовки, сам оказался по ту сторону страницы, в невероятном и невозможном мире. Прямо перед глазами, внутри склянки, из бесформенного комка желтой клеточной массы выполз, судорожно извиваясь, длинный, ветвящийся корень какого-то растения. Он жадно гложет питательное желе и гонит живительные соки… в никуда: самого растения в комке клеток не было и нет, здесь таинственно возник только этот корень.
А рядом, в другой колбе, клеточная масса ощетинилась, как еж, множеством коротких острых корешков. В склянке, что стоит поодаль, все наоборот: ни одного корешка, но из губчатого комка напряженно вытянулся вверх, словно пытаясь вырваться наружу, бледный стебель с несколькими листьями.
— Этот корешок, — кивает И. В. Грушвицкий на длинный корень, — образовался из клеток тропического растения раувольфии. А там, в цветочном горшке, — нормальное растение, со всеми органами. Оно тоже выросло в колбе из недифференцированной ткани, и мы его пересадили в землю — посмотрим, что будет дальше. «Ежик» — культура ткани женьшеня. Добиться, чтобы в изолированной клеточной массе зародились органы растения или даже целое растение, в общем, не так уж трудно…
Однако до того как мы углубимся в малоизученную область науки, занимающейся проблемами культивирования растительных клеток и тканей, надо сказать, что мы находимся в лаборатории кафедры фармакогнозии и ботаники Ленинградского химико-фармацевтического института и наши руководители в этом путешествии — профессор И. В. Грушвицкий, кандидаты биологических наук А. Г. Воллосович, Л. И. Слепян, И. X. Никогосян.
Итак, попытки выращивать в стекле отдельные клетки или ткани растений предпринимались давно, но без особого успеха. Лишь в последние десятилетия разработаны приемы и методы, позволяющие делать это. В Советском Союзе исследования культуры растительных тканей начались в Институте физиологии растений АН СССР под руководством профессора Р. Г. Бутенко. Потом ими занялись и другие научные учреждения страны.
Сегодня накоплено немало знаний в этой области. Установлено, что если растение «поранить», то в месте «ранения» начинается энергичное деление клеток и из них образуется каллюс — губчатый нарост. Каллюсные клетки, как правило, способны жить и размножаться вне организма материнского растения. Для этого надо лишь поместить их в стерильные условия и подходящую питательную среду. Ведя самостоятельную жизнь, растительные клетки, так же как и животные, почти всегда теряют дифференциацию, «дичают»: взятые из столь различных органов, как корень, стебель или лист, они, попав в колбу, утрачивают свои специфические особенности и становятся похожими друг на друга. Разросшаяся масса таких клеток и именуется учеными культурой недифференцированной ткани.
Эта культура живет по своим собственным законам, которые, впрочем, в огромной мере
Ставя перед растительными клетками, проживающими в колбе, те или иные трудные задачи, ученые нередко призывают на помощь «няньку» — кусочек живой ткани, вырезанной из растения. (Вспомним опыты с клетками печени мышиного эмбриона: там тоже в особых случаях вынуждены были звать на помощь кроветворным клеткам печеночные и костные.) «Нянька», постоянно находясь рядом с клеточкой-воспитанницей и выделяя в окружающую среду свои гормоны, будет опекать ее и направлять ее развитие.
Подобные приемы уже используются в некоторых странах с практическими целями, когда надо размножить уникальный посадочный материал, получить мутантные растения, освободить ценную культуру от очень прилипчивой болезни.
Но как ни интересна эта проблема, не ею занимаются в комнатке, сплошь уставленной стеллажами. Корни, стебли и целые растения, развивающиеся в колбах, — лишь побочный результат других поисков и исследований.
Клетка, попавшая в колбу, хотя и «дичает», но все же сохраняет многие свойства, присущие клеткам материнского растения. Но, в таком случае, не соблюдает ли она — как бы это выразиться? — биохимическую верность своему роду? Если, скажем, в организме раувольфии змеиной, произрастающей под солнцем Индии, вырабатывается 26 алкалоидов, некоторые из которых являются самыми активными из известных препаратов против сердечно-сосудистых заболеваний, то, может быть, и в клеточной массе, выросшей в лаборатории на берегах Невы, станут синтезироваться те же самые алкалоиды? И не будет ли накапливаться в клетках женьшеня, развивающихся на искусственной питательной среде, тот же таинственный комплекс действующих веществ, который содержится в корне жизни?
Перечень подобных вопросов, возникших несколько лет назад перед сотрудниками кафедры фармакогнозии и ботаники, был достаточно велик: среди лекарственных растений немало таких, которые или чрезвычайно редко встречаются в природе и плохо приживаются на плантациях, или обитают только в тропическом климате, или содержат в себе так мало целебных веществ, что для извлечения граммов лекарства приходится заготавливать тонны сырья. И естественно, что постоянными поселенцами на «плантациях» в колбах стали клетки женьшеня, раувольфии змеиной и паслена дольчатого — то есть именно тех ценнейших растений, в которых нуждается наша фармацевтическая промышленность.
Уже первые урожаи, собранные на стеллажах в лаборатории, подтвердили надежды: лекарственные вещества были обнаружены как в самих клетках, так и в среде, которой они питались. Правда, сначала этих веществ было во много раз меньше, чем в материнских растениях. Но шли месяцы, новым поколениям клеток предлагалось все более усовершенствованное меню, и их продуктивность неуклонно росла. Сегодня некоторые культуры тканей обгоняют обычные растения по содержанию полезных веществ в растительной массе. Более того, они и гораздо быстрее создают эту массу. Если, например, 50-граммовый корень женьшеня вырастает в естественных условиях за 50 лет, а на самой лучшей плантации при огромных затратах труда — за 6 лет, то в колбе этот же «привес» получают за 7–8 недель! А за год таких урожаев можно получить несколько.