Чтение онлайн

на главную - закладки

Жанры

Книга шифров. Тайная история шифров и их расшифровки
Шрифт:

Этот поразительный результат противоречит здравому смыслу. С точки зрения законов классической физики, то есть таких законов, которые были созданы для описания того, как ведут себя обычные предметы, объяснить это явление невозможно. Классическая физика может объяснить орбиты планет или траекторию пушечного ядра, но совершенно не способна дать описание микромира, например, траектории фотона. Для объяснения таких фотонных процессов физики прибегают к квантовой теории, объясняющей поведение объектов на микроскопическом уровне. Однако даже теоретики квантовой физики не могут прийти к согласию относительно объяснения результата этого эксперимента. Они раскололись на два лагеря, каждый из которых интерпретирует результат по-своему.

Первым лагерем постулируется концепция, известная как суперпозиция. Сторонники суперпозиции начинают с того, что заявляют, что доподлинно нам известны о фотоне только две вещи: он вылетает из нити накаливания и он попадает на экран. Все остальное — полнейшая загадка, в том числе, полетит ли фотон через левую или через правую щель. Так как точный путь фотона неизвестен, сторонники суперпозиции считают, что фотон каким-то образом пролетает одновременно через обе щели, что позволяет ему затем проинтерферировать самому с собой и создать рисунок в виде полос, который и наблюдается на экране. Но разве способен одиночный фотон пролететь через обе щели?

Аргументация сторонников суперпозиции на этот счет следующая. Если мы не знаем, как ведет себя частица, то значит, могут одновременно реализовываться все вероятности. В случае фотона нам не известно, пролетит ли он через левую или же через правую щель, поэтому мы предполагаем, что он пролетает через обе щели одновременно. Каждая вероятность называется состоянием, а поскольку в данном случае с фотоном реализуются обе вероятности, то говорят, что он находится в суперпозиции состояний. Мы знаем, что один фотон испускается нитью накаливания, и мы знаем, что один фотон попадает на экран за перегородкой, но между этими событиями он каким-то образом разделяется на два «фотона-призрака», которые пролетают через обе щели. Суперпозиция может звучать и глупо, но она хотя бы дает объяснение появлению рисунка в виде полос, получающегося в эксперименте Юнга с отдельными фотонами. Сравните, классическое представление, состоящее в том, что фотон должен пролететь через одну из двух щелей — мы просто не знаем, через какую именно, — кажется более здравым, чем квантовое, но, к сожалению, оно не способно объяснить получающийся результат.

Эрвин Шредингер, получивший Нобелевскую премию по физике в 1933 году, придумал мысленный эксперимент, известный под названием «кошка Шредингера», который часто используется для объяснения концепции суперпозиции. Представьте себе кошку, находящуюся в ящике. Для этой кошки существуют два возможных состояния: мертвая или живая. Вначале мы достоверно знаем, что кошка находится в одном определенном состоянии, поскольку можем видеть, что она живая. В этот момент кошка не находится в суперпозиции состояний. Затем положим в ящик рядом с кошкой ампулу с цианидом и закроем крышку. Теперь для нас наступил период неведения, потому что не можем видеть кошку или определить ее состояние. Жива ли она, или же наступила на ампулу с цианидом и умерла? В обычной жизни мы бы сказали, что кошка либо мертва, либо жива, — мы только не знаем, что именно. Квантовая теория, однако, говорит, что кошка находится в суперпозиции из двух состояний: она и мертва, и жива, то есть она находится во всех возможных состояниях. Суперпозиция возникает только тогда, когда объект пропадает у нас из виду и является способом описания объекта в период неопределенности. Когда, в конечном итоге, мы откроем ящик, мы сможем увидеть, жива ли кошка или мертва. Это действие — мы смотрим на кошку — вынуждает ее перейти в одно из определенных состояний, и тут же суперпозиция исчезает.

Для тех читателей, кому не нравится суперпозиция, есть второй квантовый лагерь, выступающий за иную интерпретацию эксперимента Юнга. К сожалению, эта альтернативная точка зрения столь же причудлива. В многомировой интерпретации объявляется, что после того, как фотон вылетел из нити накаливания, у него есть две возможности: он пролетит либо через левую, либо через правую щель — в этот момент мир разделяется на два мира, и в одном мире фотон пролетает через левую щель, а в другом мире фотон пролетает через правую щель. Оба эти мира как-то взаимодействуют друг с другом, чем и объясняется появление рисунка в виде полос. Сторонники многомировой интерпретации считают, что всякий раз, как у объекта появляется возможность перейти в одно из нескольких вероятных состояний, мир разделяется на множество миров с тем, чтобы каждая вероятность реализовывалась в отличающемся мире. Такое множественное число миров именуется мультимиром.

Неважно, выбираем ли мы суперпозицию или многомировую интерпретацию, квантовая теория является сложной философской доктриной. Но несмотря на свою сложность, она показала себя самой успешной и практичной научной теорией, которая когда-либо появлялась. Квантовая теория помимо того, что способна объяснить результат, полученный в эксперименте Юнга, успешно объясняет и множество других явлений. Только квантовая теория дает возможность физикам рассчитать последствия ядерных реакций в атомных электростанциях; только квантовая теория может дать объяснение чудесам ДНК; только квантовая теория объясняет, почему светит Солнце; только квантовая теория может применяться при разработке лазера для считывания компакт-дисков в вашей стереосистеме. Так что нравится нам это или нет, но мы живем в квантовом мире.

Из всех следствий квантовой теории самым технически важным является, по-видимому, квантовый компьютер, который помимо того, что разрушит стойкость всех современных шифров, возвестит приход новой эры вычислительных возможностей. Одним из пионеров квантовых вычислений был Дэвид Дойч, британский физик, начавший трудиться над этим принципом в 1984 году после участия в конференции по теории вычислений. Слушая на конференции одно из выступлений, Дойч обнаружил нечто такое, на что ранее не обращали внимания. Неявно предполагалось, что все компьютеры действовали по законам классической физики, но Дойч был убежден, что на самом деле компьютеры должны подчиняться законам квантовой физики, так как квантовые законы являются более фундаментальными.

Обычные компьютеры действуют на относительно макроскопическом уровне, а на этом уровне в законах квантовой и классической физики почти нет отличий. Поэтому не имело значения, что ученые, как правило, рассматривали обычные компьютеры с точки зрения классической физики. Однако на микроскопическом уровне возникают различия в этих двух совокупностях законов, и на этом уровне применимы только законы квантовой физики. На микроскопическом уровне квантовые законы демонстрируют свою истинную фантастичность, и компьютер, созданный на основе этих законов, станет вести себя совершенно по-иному. После конференции Дойч вернулся домой и принялся за переработку теории компьютеров в свете квантовой физики. В статье, опубликованной в 1985 году, он дал свое видение квантового компьютера, действующего по законам квантовой физики. В частности, он объяснил, чем его квантовый компьютер отличается от обычного компьютера.

Рис. 72 Дэвид Дойч

Представьте, что у вас есть два варианта вопроса. Чтобы ответить на оба с помощью обычного компьютера, вам нужно будет ввести первый вариант и дождаться ответа, а затем ввести второй вариант и снова ждать ответ. Другими словами, обычный компьютер может в каждый момент времени работать только с одним вопросом, а если есть несколько вопросов, то работать с ними придется последовательно. Однако при использовании квантового компьютера оба варианта могут быть объединены в виде суперпозиции двух состояний и заданы одновременно, а машина сама после этого введет суперпозицию обоих состояний, по одному на каждый вариант. Или, в соответствии с многомировой интерпретацией, машина введет два различных мира и даст ответ по каждому варианту вопроса в различных мирах. Но безотносительно к интерпретации, квантовый компьютер может в одно и то же время обрабатывать два варианта, используя законы квантовой физики.

Чтобы получить представление о возможностях квантового компьютера, мы можем сравнить его эффективность с эффективностью работы обычного компьютера, посмотрев, что происходит, когда каждый из них используется для решения конкретной задачи. К примеру, компьютеры обоих типов могут решать задачу нахождения такого числа, в квадрате и кубе которого будут присутствовать, но ни разу не повторяться, все цифры от 0 до 9. Если мы проверим число 19, то получим, что 192 = 361, а 193 = 6859. Это число не удовлетворяет нашему требованию, поскольку в его квадрате и кубе используются только цифры 1, 3, 5, 6, 6, 8 и 9, то есть цифр 0, 2, 4 и 7 нет, а цифра 6 повторяется дважды.

Популярные книги

Внешняя Зона

Жгулёв Пётр Николаевич
8. Real-Rpg
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Внешняя Зона

Под знаменем пророчества

Зыков Виталий Валерьевич
3. Дорога домой
Фантастика:
фэнтези
боевая фантастика
9.51
рейтинг книги
Под знаменем пророчества

Кодекс Охотника. Книга III

Винокуров Юрий
3. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Кодекс Охотника. Книга III

Черный маг императора 3

Герда Александр
3. Черный маг императора
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора 3

Назад в СССР: 1984

Гаусс Максим
1. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
4.80
рейтинг книги
Назад в СССР: 1984

Идеальный мир для Социопата 7

Сапфир Олег
7. Социопат
Фантастика:
боевая фантастика
6.22
рейтинг книги
Идеальный мир для Социопата 7

Кодекс Охотника. Книга IX

Винокуров Юрий
9. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга IX

Тройняшки не по плану. Идеальный генофонд

Лесневская Вероника
Роковые подмены
Любовные романы:
современные любовные романы
6.80
рейтинг книги
Тройняшки не по плану. Идеальный генофонд

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Самый лучший пионер

Смолин Павел
1. Самый лучший пионер
Фантастика:
попаданцы
альтернативная история
5.62
рейтинг книги
Самый лучший пионер

Если твой босс... монстр!

Райская Ольга
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Если твой босс... монстр!

Миллионер против миллиардера

Тоцка Тала
4. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
5.25
рейтинг книги
Миллионер против миллиардера

Сумеречный стрелок 8

Карелин Сергей Витальевич
8. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Сумеречный стрелок 8

Безымянный раб [Другая редакция]

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
боевая фантастика
9.41
рейтинг книги
Безымянный раб [Другая редакция]