Книга теорем 2
Шрифт:
5. А + 0 = А, В + 0 = В…, Х + 0 = Х.
6. Х + Y = 0.
7. 0 + 0 = 0.
Вывод:
Так как мыслящий ум имеет дело с поляризованными объектами, то в построениях ума должен быть объект, содержащий свойства нуля. Именно это мы встречаем в понятиях «пустота», «вакуум», «отсутствие».
Этот термин заимствован из математики, где единицей называют такой элемент 0 группы «умножения», что (0)*(0) = (0), а также (0)*(А) = А, (0)*(В) = В,…, (0)*(Х) = (Х).
Теорема 10. Каждая лока имеет единицу.
Доказательство.
1. Если, согласно аксиоме 2 введём во взаимодействие все объекты локи, то результатом может быть только объект этой локи. Так для (А)*(В)*….*(Х), согласно аксиоме 3, ставим в соответствие (К), где К — объект этой же группы полярных объектов.
2. Так как объект К содержится в приведённое совокупности, то полученное выражение можно переписать ((А)*(В)*….*(Х))*(К) = (К), где совокупность ((А)*(В)*….*(Х)) уже не содержит объект К.
3. Найдётся такое высказывание, когда совокупности ((А)*(В)*….*(Х)) будет соответствовать некоторый объект Е. Тогда равносильно можно записать (Е)*(К) = К.
4. Высказывание (Е)*(К) = К определяет элемент Е как единицу.
5. Найдётся также некоторая пара взаимодействующих объектов (Х)*(У) для которых в соответствие станет объект Е.
6. Наконец, рассуждение подобное рассуждению пункта 2 можно повторить с любым другим объектом М, то есть ((А)*(В)*….*(Х))*(М) = (М), где ((А)*(В)*….*(Х)) не содержит М.
7. Точно так же совокупности ((А)*(В)*….*(Х)) взаимодействующих объектов можно поставить в соответствие некоторый объект Н. Тогда (Н)*(М) = М.
8. По аксиоме 1 получается, что объект Е п.4 и объект Н п. 7 это один и тот же объект.
9. Такие же рассуждения проводим поочерёдно для каждого элемента всей совокупности (А), (В),….,(Х) полярных объектов.
10. Отсюда получается, что в совокупности объектов есть такой объект Е, когда (А)*(Е) = А, (В)*(Е) = В, …… (Х)*(Е) = Х.
11. Частным случаем при парном взаимодействии объектов найдётся случай, когда (Х)*(У) = Е.
12. Но так как (Х)*(Е) = Х, а так же (У)*(Е) = У, то получим высказывание ((Х)*(Е))* ((У)*(Е)) = Е. Откуда (Е)*(Е) = Е.
Замечание: Эта теорема так же доказывается методом индукции, начиная с локи 1, затем локи 2, локи 3, локи 4, и так далее.
Следствие. Любая лока содержит в себе такой объект, который выполняет условия:
1. (А)*(Е) = А, (В)*(Е) = В, …… (Х)*(Е) = Х.
2. (Х)*(У) = Е.
3. (Е)*(Е) = Е.
4. Элемент со свойствами (0)*(0) = (0) уже получил обозначение 0. Согласно этой символике предыдущее будет записано как:
5. (А)*(0) = А, (В)*(0) = В, …… (Х)*(0) = Х.
6. (Х)*(У) = 0.
7. (0)*(0) = (0).
Вывод: Так как мыслящий ум имеет дело с поляризованными объектами то в построениях ума должен быть объект, содержащий свойства единицы. Именно это мы встречаем в понятиях «абсолют», «бесконечность», «Бог».
Какими бы ни были виды ума, в каждом из них есть единица, то есть некоторый Абсолют. Так как видов Абсолюта (ноль, единица, бесконечность, шунья, и т. п.) много, то дадим объединяющее название «мукти».
1. В переводе с санскрита мукти это освобождённый, свободный, вышедший из мира причин и следствий, неизменяемый. Объект со свойствами 0 + 0 + 0 +…+ 0 = 0, (+)*(+)*(+)*….*(+) = +, Е + Е + Е +…+ Е = Е, «бесконечность бесконечности есть бесконечность» и есть мукти. Символически обозначим его 0. Итак, 0*0*0….*0 = 0.
2. Мукти обладает свойством не влиять на объект. Например, (+)*(-) = —. 5 + 0 = 5, «человек во вселенной остаётся человеком». В общем, (0)*(Х) = Х.
3. Мукти является «конечным» в локализованном пространстве. Это своего рода граница такая, что любой объект отражается об эту границу (0)*(Х) = Х. Кроме того, любой объект может приблизиться и стать границей nХ = 0 или ХY = 0. Всё это доказано так, что применена система аксиом.
4. Граница создаёт условия «цикличности». Так, если nX = 0, то (n + 1)Х = Х.
5. Согласно одному из свойств границы — «цикличности» — мукти может составлять, например круг в 360 градусов, так как угол? повторится после 360 +? =?. В этой связи многополярность распространяется на тригонометрию. Рассечение круга на части и есть поляризованные объекты, которые можно вводить во взаимодействие.
6. Мукти имеют и другие локализованные пространства. Поэтому определять наличие локализации можно по законам отношений. Например, содержание «теории множеств» относится всего лишь к локе 2, так как законы отношений у авторов и разработчиков этой теории имели двухполярную базу линейного ума.
Изоморфизм
1. Изоморфизм, одно из основных понятий современной математики, возникшее сначала в пределах алгебры в применении к таким алгебраическим образованиям, как группы, кольца, поля.
2. Понятие изоморфизма относится к системам объектов с заданными в них операциями или отношениями. В качестве простого примера двух изоморфных систем можно рассмотреть плоскостной и объёмной поляризаций локу 3. В плоскостной локе А + В = 0, А + 0 = А, В + 0 = В, 0 + 0 = 0. В локе 3 объёмной поляризации ((А)*(В) = 0, (А)*(0) = А, (В)*(0) = В, (0)*(0) =0.
Внутренние «композиции» этих видов поляризованных пространств наглядно очевидны. Однако применение их к числам или объектам дает разные результаты. Например, +7–5 = +2, но (+7)*(— 5) = — 35.