Колонизация солнечной системы.Проекты
Шрифт:
По мере накопления опыта конструкция реакторов для ядерного ракетного двигателя - ЯРД - усложнялась. Оксид урана был заменен на более термостойкий карбид, вдобавок его стали покрывать карбидом ниобия, но при попытках достигнуть проектной температуры реактор начинал разрушаться. Больше того, даже при отсутствии макроскопических разрушений происходила диффузия уранового топлива в охлаждающий водород, и потеря массы достигала 20% за пять часов работы реактора. Так и не был найден материал, способный работать при 2700-30000С и противостоять разрушению горячим водородом.
Поэтому американцы приняли решение пожертвовать эффективностью и в проект летного двигателя заложили удельный импульс (тяга в килограммах силы, достигаемая при ежесекундном
Но уроки, извлеченные из десятка построенных реакторов и нескольких десятков проведенных испытаний, состояли в том, что американские инженеры слишком увлеклись натурными ядерными испытаниями, вместо того чтобы отрабатывать ключевые элементы без вовлечения ядерной технологии там, где этого можно избежать. А где нельзя - использовать стенды меньшего размера. Американцы почти все реакторы 'гоняли' на полной мощности, но не смогли добраться до проектной температуры водорода - реактор начинал разрушаться раньше. Всего с 1955 по 1972 годы на программу ядерных ракетных двигателей было потрачено $1,4 млрд.
– примерно 5% стоимости лунной программы.
СССР.
СССР начал с 14 тонн. Такой небольшой ЯРД хорошо подходил на четвертую ступень ракеты 'Протон'. Стенд "Стрела"
Гетерогенные
Первое и главное отличие наших ЯРД от американских - их решено было делать гетерогенными. В гомогенных (однородных) реакторах ядерное топливо и замедлитель распределены в реакторе равномерно. В отечественном ЯРД ТВЭЛы (тепловыделяющие элементы, ядерное топливо) были отделены теплоизоляцией от замедлителя, так что замедлитель работал при гораздо меньших температурах, чем в американских реакторах. Следствие этого - отказ от графита и выбор гидрида циркония в качестве основного замедляющего материала. По нейтронно-физическим свойствам гидрид циркония близок к воде, поэтому, во-первых, реактор получался втрое компактнее, чем графитовый (а значит, и намного легче), во-вторых, физические модели двигательного реактора можно было отлаживать гораздо быстрее и дешевле.
Второе, может быть, даже более радикальное отличие - в гидродинамике. Раз уж невозможно было добиться, чтобы ядерное топливо не растрескивалось в реакторе, нужно сделать так, чтоб растрескивание не приводило к изменениям свойств реактора - ни ядерных, ни гидравлических. Была проведена совершенно фантастическая по объему работа, в результате которой выбрали оптимальную форму стержней ядерного топлива - витые стерженьки с сечением в форме четырехлепесткового цветка, размер лепестков - всего пара миллиметров при длине стержня примерно в метр! Такие стержни, упакованные в плотную пачку, образуют систему каналов, свойства которых не изменяются, даже если стержни в процессе работы растрескиваются. Больше того, обломки размером даже в доли миллиметра оказываются заклинены соседними кусками стержня и остаются на месте! В сопло уносятся только совсем микроскопические частицы, максимум в десятки микрон.
Для достижения максимальной температуры водорода на выходе эти стержни содержали переменное по длине количество урана - чем ближе к 'горячему' концу, то есть к соплу, тем меньше было делящегося материала. Назвали это 'физическим профилированием'. Конструкторы жертвовали компактностью реактора ради экономии водорода - тепловые потоки такой величины, как на 'холодном' конце стержня, где перепад температур достигал 25000С, были невозможны на горячем, разница температур между ядерным топливом и водородом уменьшалась в 10 раз - во столько же нужно было снизить теплопоток. На этом удалось выиграть
По барабану
При такой конструкции реактора регулирующие нейтронный поток органы тоже пришлось вынести наружу. В традиционных реакторах это стержни, размещенные более или менее равномерно по объему. В ЯРД реактор был окружен отражателем нейтронов из бериллия, в который были врезаны барабаны, покрытые с одной стороны поглотителем нейтронов. В зависимости от того, какой стороной барабаны были обращены к активной зоне, они поглощали больше или меньше нейтронов, что и использовалось для управления реактором. К этой схеме пришли в итоге и американцы.
Ядерное топливо для реактора ЯРД - это отдельная, тоже очень объемная работа. Для исследования свойств материалов при таких условиях пришлось построить специальный опытный реактор ИГР, в котором исследуемый ТВЭЛ мог иметь температуру на 10000С больше, чем основной объем активной зоны. В два с половиной раза был в этом месте больше и поток нейтронов. Вот только испытания эти были кратковременными - но об этом позже.
Композитное топливо
В результате топливо стало композитом, как стеклопластик, из карбидов урана и вольфрама или циркония, причем при такой высокой температуре кристаллы карбида вольфрама придавали ему прочность, а карбид урана заполнял пространство между ними. И тут наши обошли американцев - заокеанские ядерщики уже научились использовать карбид урана вместо обычного для ядерной энергетики оксида и комбинировать его с карбидами других металлов, но до композитной структуры в своих исследованиях не дошли. Выпуском столь сложного ядерного материала занималось подольское НПО 'Луч'.
На Семипалатинском полигоне, в 50 километрах от места испытаний первой ядерной бомбы, для реакторов ЯРД был построен специальный стендовый комплекс 'Байкал'. 'Планов громадьё' предусматривало в нем две очереди, но реализована была только первая. Из-за этого не было возможности испытать реактор с жидким водородом, да и испытания с газообразным сжатым удалось провести не в полном объеме. Тем не менее были построены два рабочих места, одно с реактором ИВГ-1, другое для реактора ИРГИТ. Реактор ИВГ-1 был многоцелевым, он мог использоваться и как стендовый прототип будущего ЯРД тягой 20-40 тонн, и как стенд для испытания новых видов ядерного топлива. Старенький ИГР, заложенный еще при жизни Курчатова (Игорь Васильевич в шутку называл его ДОУД-3), мог работать только в импульсном режиме, так как вовсе не имел охлаждения и выделявшееся тепло разогревало активную зону до 30000C за несколько секунд, после чего требовался многочасовой перерыв. ИВГ мог работать до двух часов подряд, что давало возможность изучить долговременное влияние условий работы на ядерное топливо. Именно с него и началась в 1972 году работа на 'Байкале'. Несмотря на водяной замедлитель, водород, охлаждающий ядерное топливо, мог нагреваться до 25000C, а в специальном центральном канале можно было получить и все 30000C!
Подмосковный полигон
В это же время в подмосковных Химках шла отработка турбонасосного агрегата, агрегатов автоматики и управления и других механизмов, которые из реактора делают ЯРД. А вот самого реактора в составе этого 'холодного' двигателя и не было - подогрев водорода в специальных теплообменниках происходил от обычных кислород-водородных горелок. Остальные агрегаты полностью соответствовали настоящему двигателю. Например, для уменьшения выноса углерода из ТВЭЛов горячим водородом в активную зону приходилось добавлять гептан. Этот углеводород - фактически бензин для зажигалок, только очень тщательно очищенный, - нужен был в небольшом количестве, 1-1,5% от массы водорода. Такая малая добавка не влияла на удельный импульс двигателя, но для достижения нужной эффективности насоса тот должен был вращаться со скоростью почти 170 000 об./мин, то есть почти втрое быстрее гироскопов в системах управления ракет того времени! Однако к 1977 году все задачи удалось решить и агрегаты могли работать часами.