Компьютерра PDA N71 (06.11.2010-13.11.2010)
Шрифт:
Задача маркетолога в интернете - такая же как и в любом другом оффлайновом бизнесе. Это обеспечить любовь, и желательно долгосрочную, людей к тому сервису, который они продвигают. Это совсем не то же, что называется "залить трафика". "Заливать трафик" - это такой отголосок той эпохи, когда об успешности сервиса судили по его позиции в рейтинге "Рамблера". Сейчас последнее далеко не так актуально.
Я почти не знаю людей, которые гордились бы тем, что они имеют высокие позиции в рейтинге "Рамблера". Зато люди, которые говорят "моя задача как маркетолога налить больше трафика на сайт", продолжают встречаться - спасибо оптимизаторам. К счастью, это тоже становится все более редким явлением.
Формальных определений churn rate,
Это тот самый отток пользователей, который, вообще говоря, присущ традиционным сервисам с подпиской. Мобильные операторы, к примеру, об этом говорить не любят - как и о любой отрицательной метрике. Даже если churn rate уменьшился, этим хвалиться стесняются - видно, что люди все-таки уходят. И очень важно понять почему. Как они уходят?
Когда смотришь на динамику какого-нибудь сервиса, иногда видишь катастрофическую картинку (я привожу пример в линейном масштабе). Прошло больше месяца, и мы потеряли больше половины пользователей из тех, которых привели рекламные компании, и люди продолжают разбегаться.
На самом деле не нужно пугаться - нужно это прогнозировать. Для начала нарисовать все в логарифмическом масштабе. Если это нарисовать в полулогарифмическом масштабе (то есть оставить линейной шкалу времени) и здесь единицы (либо недели, либо месяцы), получится "длинное время".
Вот данные, взятые с некого сервиса, с которым мне приходилось работать. Это недельная статистика.
Оказывается, что тут график становится суммой двух экспонент. Так себя ведет радиоактивный изотоп - они распадаются при экспоненте. То есть за одно и тоже время одна и та же оставшаяся доля изотопа на что-то распадается. Есть такие же графики: если пытаться аппроксимировать двумя экспонентами, то совпадение будет практически идеальное.
Есть две экспоненты (в полулогарифмическом масштабе экспоненты представляются прямыми): быстро падающая прямая и медленно падающая прямая. Это классическая история из физики: два изотопа смешанные в разных пропорциях и с резко отличающимся временем жизни.
И оказывается, что таким образом мы можем в первом приближении разделить пользователей на две общие категории: есть пользователи быстро "распадающиеся" (быстро покидающие сервис), и на старте их чаще всего больше чем пользователей второго типа, которые "утекают" медленно (они показаны красным пунктиром), но доля которых в начале не велика.
По сути, это смесь двух типов пользователей: лояльных и достаточно случайных: тех, которые зашли один-два раза, потом не вернулись, и тех, которые конечно уйдут когда-нибудь, но не скоро, а пока продолжают ходить из месяца в месяц. Таким образом, можно разбираться с этими двумя категориями пользователей. Из этой кривой, которую нужно померить на протяжении относительно короткого времени, можно получить количественные выводы о том, а какая доля у вас получилась долгосрочной лояльной аудитории и дальше разбираться, почему она получилась именно такой.
Проиллюстрирую
Почему так важны долгосрочные прогнозы, почему я говорю о том, что очень важно за три-четыре недели получить сведения о доле и периоде "полураспада" лояльных пользователей? Потому что интернет-среда - очень быстрая среда. Стартапы вообще живут в немыслимо быстром времени - цикл создания чего-нибудь новенького, прототипного, измеряется часами. Ждать неделю, чтобы представить проект инвесторам - это уже целая вечность.
Поэтому сиюминутные метрики становятся в головах людей превалирующими, более того - в интернете все можно править налету, все сразу видно. Но изменения, вызванные сиюминутными наблюдениями вызывают определённые проблемы. Вспомнить пример с фокус-группами - если пользователь говорит, что ему что-то кажется прикольным, наверное, можно из этого сделать некую однократную акцию. Если же сделать такое явление постоянным - на этом можно навсегда потерять лояльную аудиторию. То, что что для случайных посетителей будет очень прикольно, может быстро надоесть тем, кто пользуется сервисом постоянно.
Отсюда и проблемы всех этих долгосрочных решений, принятых на основе реакций, отслеживаемых за секунды или часы. Такое наблюдение не решает главного вопроса - долгосрочной любви и лояльности сайту. Эти пресловутые методы churn rate можно применять по-разному и собирать информацию из разных источников.
Если показатели "посыпались" - это может быть следствием любого эффекта. И определение причины - непрямая задача исследования. Причиной может быть что-то внешнее. Может быть, это естественная вещь - вы обновили версию и старые UID исчезли. На самом деле это не люди ушли, а лишь обновились идентификаторы программы.
Часто еще бывает, что конкурент что-то выпустил и те, кто были вашими лояльными пользователями, стали менять ваш продукт на аналогичный продукт конкурента. И такой звоночек, вовремя полученный из этой таблицы, позволяет быстро определить захватывает ли это всех, кто живет с вами уже полгода, или их уже никаким калачом не переманишь, и быстро принять ответные шаги.
Теперь немного практических выводов и советов. Во-первых, желательно любые измерения и изменения тестировать не только на сиюминутной метрике вроде тех самых фокус-групп или метрик вроде глубины просмотра. Хорошо бы предоставить продукт тестовой группе в параллель с основной версией и посмотреть долгосрочные метрики на группах пользователей, составляющих небольшую долю от вашей аудитории.
Можно посмотреть, как ведет себя программа и как ведут себя пользователи сервиса в интернете в тестовой группе. И в то же время изучить то, как ведут себя пользователи, которые зарегистрировались на нашем старом интерфейсе. Сравнивать напрямую их нельзя - у них разная реакция. Отношение этих долей лояльных пользователей к отношению периода полураспада и у лояльных и у "быстроутекающих" выявляется сериями метрик, за которыми в таком эксперименте нужно следить. Если делать это на регулярной основе - узнаете много нового и интересного.