Концепции современного естествознания
Шрифт:
pVm= RT.
Числовое значение молярной газовой постоянной R = 8,31 Дж/моль · K.
Первое начало термодинамики
Первое начало, или первый закон термодинамики, или закон сохранения энергии для тепловых систем, удобно рассмотреть на примере работы тепловой машины. В состав тепловой машины входят источник тепла Q1, рабочее тело, например цилиндр с поршнем, под которым газ может нагреваться (Q1) или охлаждаться холодильником, отбирающим от рабочего тела тепло Q2. При этом может совершаться работа A и изменяется внутренняя энергия U.
Энергия теплового
U = Q1– A
или:
Q1= A1 + U.
В дифференциальной форме:
dQ = dA + dU.
Первое начало термодинамики определяет вторую функцию состояния – энергию, точнее, внутреннюю энергию U, которая представляет энергию хаотического движения всех молекул, атомов, ионов и т. д., а также энергию взаимодействия этих микрочастиц. Если система не обменивается с окружающей средой энергией или веществом (изолированная система), то dU = 0, а U = const в соответствии с законом сохранения энергии. Отсюда следует, что работа А равна количеству теплоты Q, то есть периодически действующий двигатель (тепловая машина) не может совершать работу большую, чем сообщенная ему извне энергия, а это значит, что невозможно создать двигатель, который путем каких-то преобразований энергии может увеличить ее общее количество.
Круговые процессы (циклы). Обратимые и необратимые процессы
Круговым процессом (циклом) называется такой процесс, при котором система проходит через ряд состояний и возвращается в исходное состояние. Такой цикл можно представить замкнутой кривой в осях P, V, где P – давление в системе, а V – ее объем. Замкнутая кривая состоит из участков, где объем увеличивается (расширение), и участка, где объем уменьшается (сжатие).
При этом работа, совершаемая за цикл, определяется площадью, охватываемой замкнутой кривой. Цикл, который протекает через расширение, а потом сжатие, называется прямым, он используется в тепловых машинах – периодически действующих двигателях, совершающих работу за счет полученного извне тепла. Цикл, который протекает через сжатие, а потом расширение, называется обратным и используется в холодильных машинах – периодически действующих установках, в которых за счет работы внешних сил теплота переносится от одного тела к другому. В результате кругового процесса система возвращается в исходное состояние:
U =0, Q = A
Система может как получать теплоту, так и отдавать. Если система получает Q1 теплоты, а отдает Q2, то термический коэффициент полезного действия для кругового процесса
Обратимые процессы могут происходить как в прямом, так и в обратном направлении
В идеальном случае, если процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среде не происходит никаких изменений Обратимые процессы – это идеализация реальных процессов, при которых всегда происходит некоторая потеря энергии (на трение, теплопроводность и т д)
Понятие обратимого кругового процесса ввел в физику в 1834 г французский ученый Б Клапейрон
Идеальный цикл теплового двигателя Карно
Когда мы говорим об обратимости процессов, следует учитывать, что это некоторая идеализация. Все реальные процессы необратимы, поэтому и циклы, по которым работают
Знаменитый цикл идеального двигателя Карно считается равновесным обратным круговым процессом. В реальных условиях любой цикл не может быть идеальным, так как существуют потери. Он совершается между двумя источниками теплоты с постоянными температурами у теплоотдатчика Т1 и теплоприемника Т2, а также рабочим телом, в качестве которого принят идеальный газ (рис. 3.1).
Рис. 3.1. Цикл теплового двигателя
Полагаем, что Т1 > Т2 и отвод тепла от теплоотдатчика и подвод тепла к теплоприемнику не влияют на их температуры, T1 и T2 остаются постоянными. Обозначим параметры газа при левом крайнем положении поршня теплового двигателя: давление – Р1 объем – V1, температура Т1. Это точка 1 на графике на осях P-V. В этот момент газ (рабочее тело) взаимодействует с теплоотдатчиком, температура которого также Т1. При движении поршня вправо давление газа в цилиндре уменьшается, а объем увеличивается. Это будет продолжаться до прихода поршня в положение, определяемые точкой 2, где параметры рабочего тела (газа) примут значения P2, V2, T2. Температура в этой точке остается неизменной, так как температура газа и теплоотдатчика одинакова в процессе перехода поршня от точки 1 к точке 2 (расширение). Такой процесс, при котором Т не изменяется, называется изотермическим, а кривая 1–2 называется изотермой. В этом процессе от теплоотдатчика к рабочему телу переходит теплота Q1.
В точке 2 цилиндр полностью изолируется от внешней среды (теплообмена нет) и при дальнейшем движении поршня вправо уменьшение давления и увеличение объема происходит по кривой 2–3, которая называется адиабатой (процесс без теплообмена с внешней средой). Когда поршень переместится в крайнее правое положение (точка 3), процесс расширения закончится и параметры будут иметь значения Р3, V3, а температура станет равной температуре теплоприемника Т2. При этом положении поршня изоляция рабочего тела снижается и оно взаимодействует с теплоприемником. Если теперь увеличивать давление на поршень, то он будет перемещаться влево при неизменной температуре Т2 (сжатие). Значит, этот процесс сжатия будет изотермическим. В этом процессе теплота Q2 перейдет от рабочего тела к тепло-приемнику. Поршень, двигаясь влево, придет в точку 4 с параметрами P4, V4 и T2, где рабочее тело вновь изолируется от внешней среды. Дальнейшее сжатие происходит по адиабате 4–1 с повышением температуры. В точке 1 сжатие заканчивается при параметрах рабочего тела P1, V1, T1. Поршень возвратился в исходное состояние. В точке 1 изоляция рабочего тела от внешней среды снимается и цикл повторяется.