Коррекция факторов, лимитирующих спортивный результат
Шрифт:
Липиды весьма важны для организма в качестве запасных веществ и являются основным источником энергии при длительной работе, поскольку на единицу объема они содержат вдвое большее количество энергии, чем углеводы. В процессе усвоения пищевые жиры должны быть модифицированы в своей структуре и должны быть транспортированы в места их использования. Для ускорения преобразования пищевых жиров в транспортабельную и пригодную для усвоения человеком форму необходимы липотропные факторы: некоторые действуют самостоятельно, другие – опосредованно, путем стимуляции метаболических процессов.
Схема 2. Применение регуляторов липидного обмена
Циклические
Скоростно-силовые– Подготовительный этап. Базовый этап.
Единоборства– Подготовительный этап. Базовый этап.
Координационные– Подготовительный этап.
Спортивные игры– Подготовительный этап.
< image l:href="#"/>Карнитин, L форма. Активирует жировой обмен, стимулирует регенерацию мышечной ткани.
Относится к группе витаминов В (Вт – «витамин роста»). Повышает порог устойчивости к физической нагрузке, приводит к ликвидации посленагрузочного ацидоза и, как следствие, восстановлению работоспособности после длительных истощающих физических нагрузок.
Увеличивает запасы гликогена в печени и мышцах, способствует более экономному его использованию. Способствует проникновению через мембраны митохондрий и расщеплению длинноцепочечных жирных кислот с образованием ацетил-КоА (необходим для обеспечения активности пируваткарбоксилазы в процессе глюконеогенеза, окислительного фосфорилирования и образования АТФ).
Оказывает жиромобилизующее действие, конкурентно вытесняя глюкозу, включая жирнокислотный метаболический шунт, активность которого не лимитирована кислородом (в отличие от аэробного гликолиза), поэтому эффективен при острой гипоксии мозга и др. критических состояниях.
Снижает избыточную массу тела и уменьшает содержание жира в мышцах. В плазме крови взрослых и детей старшего возраста эндогенный карнитин обнаруживается в концентрации 50 мкмоль/л.
Оказывает анаболическое действие, снижает основной обмен, замедляет распад белковых и углеводных молекул.
При приеме внутрь хорошо всасывается, уровень в плазме достигает максимума через 3 ч и сохраняется в терапевтическом диапазоне в течение 9 ч. При в/м введении обнаруживается в плазме в течение 4 ч. Легко проникает в печень и миокард, медленнее – в мышцы. Выводится почками. Вызывает незначительное угнетение ЦНС.
Липоевая кислота. Активирует окислительное декарбоксилирование, регулирует липидный и углеводный обмен, в т. ч. метаболизм холестерина, пировиноградной и альфа-кетокислот. Улучшает функции печени (в т. ч. детоксицирующую), защищает ее от действия экзо- и эндогенных повреждающих факторов. Усиливает эффект сахароснижающих препаратов. Возможны аллергические реакции. Активность ослабляется алкоголем.
Липамид. Амид липоевой кислоты. Близок по действию к липоевой кислоте. Препарат лучше переносится, чем липоевая кислота.
Метионин. Незаменимая аминокислота. Способствует синтезу холина, за счет чего нормализует синтез фосфолипидов из жиров и уменьшает отложение в печени нейтрального жира. Метионин участвует в синтезе адреналина, креатина, активирует действие ряда гормонов, ферментов, цианокобаламина, аскорбиновой, фолиевой кислот. Обезвреживает некоторые токсичные вещества путем метилирования.
В качестве регуляторов липидного обмена применяются и витамины А, В2, В6, В12, В15, С, Вс, хром, вобэнзим, бетаин.
Коррекция клеточного дыхания работающих мышц
Гипоксия
Гипоксия тканей является широко распространенным явлением, в результате изменения условий в окружающей среде, при различных патологических состояниях организма, в тренировочном процессе физического состояния. Причины появления гипоксии тканей могут быть различными и конкретными, но ответная реакция организма носит неспецифический характер и в своем развитии проходит несколько стандартных фаз и на каждой из них происходит последовательное урезание энергетических возможностей. Поэтапное выключение фрагментов дыхательной цепи по мере снижения содержания кислорода в тканях является приспособительной реакцией организма на быстро ухудшающиеся условия среды. Снижение энергопродуцирующих функций клеток до определенного предела имеет обратимый характер, но при интенсивном развитии процесса гипоксии или значительной его продолжительности изменения приобретают необратимый характер. Знание механизма повреждения тканей при гипоксии необходимо для наиболее эффективной коррекции таких состояний.
Митохондрии
Митохондрии – субклеточные элементы, в которых совершаются основные энергопреобразующие процессы. В последние годы активно разрабатывается новая область медицины – митохондриальная медицина. Установлено, что более 100 заболеваний вызваны различными нарушениями функционирования митохондрий.
Сегодня устройство митохондриальной дыхательной цепи и механизм её работы обсуждаются с единых позиций во всех авторитетных изданиях, а четверть века назад на научных конференциях шли ожесточенные споры между представителями различных школ биоэнергетиков.
Английским биохимиком Питером Митчеллом (Mitchell H., 1961) предложена хемиосмотическая гипотеза.
Известно, что окисление дыхательных субстратов кислородом катализируется дыхательными ферментами, расположенными во внутренней мембране митохондрий. По данной гипотезе окисление субстрата ферментом – акцептором электронов – происходит на одной из сторон мембраны. В результате этой реакции электрон присоединяется к ферменту, а образовавшийся в результате окисления субстрата протон высвобождается из мембраны и уходит в воду. Затем электрон переносится ферментом на другую сторону мембраны митохондрии и там он восстанавливает кислород или другой фермент, проявляющий акцепторные свойства к электрону. При восстановлении кислорода или фермента происходит связывание протонов по другую сторону мембраны.
По хемиосмотической гипотезе в процессе дыхания происходит направленный перенос протонов из одного отсека в другой, а разделительная мембрана препятствует восстановлению равновесия между отсеками митохондрии. Концентрирование протонов по одну сторону мембраны в процессе дыхания представляет собой осмотическую работу по переносу ионов в пространстве против градиента их концентрации. В процессе окисления субстрата и восстановления кислорода совершается также химическая работа.
Главная отличительная особенность мембранных окислительных процессов, подмеченная Митчеллом, заключается в одновременном выполнении двух видов работ – химической и осмотической. Эта особенность и определила название выдвинутой гипотезы.