Коррекция факторов, лимитирующих спортивный результат
Шрифт:
Нарушение энергетического гомеостаза событие с далеко идущими последствиями для клеток. По этой причине в экстренном порядке мобилизуются внутренние резервы для ликвидации энергетического дефицита. Осуществляется запуск запасной биоэнергетической системы – системы анаэробного окисления субстрата. Происходит централизация кровообращения, при котором не «отключается» от перфузии только сердце, головной мозг и почки – основные жизненно важные системы.
Включение процессов гликолиза происходит в тот момент, когда в клетке снижается содержание АТФ и увеличивается концентрация АДФ и АМФ. Этот факт свидетельствует о прекращении энергетического гомеостаза. Клетка переходит в новое нестабильное состояние и возникает реальная угроза для ее существования. Дальнейшая судьба клетки
По мере развития гипоксии наблюдается поэтапное повреждение элементов дыхательной цепи. После последовательного подавления переноса электронов через комплексы I, II и III в дыхательной цепи сохраняется последняя возможность образования АТФ за счет работы цитохромоксидазы (комплекса IV). Но, в условиях усиливающейся гипоксии и дезорганизации работы многих ферменных систем, сохранивший работоспособность фрагмент дыхательной цепи уже не способен удовлетворить энергетические запросы клетки. Этому обстоятельству способствует также относительный и абсолютный субстратный дефицит. Как известно, субстратом для комплекса IV является восстановленная форма фермента цитохрома С. Последняя окисляется кислородом с помощью цитохромоксидазы и превращается в окисленную форму фермента. При инактивации комплекса III, в котором обычно осуществлялось ферментативное восстановление окисленной формы фермента, наступает относительный субстратный дефицит. В этих условиях клетка использует запасные механизмы восстановления фермента за счет реакций не ферментативного взаимодействия последнего с убисемихиноном или супероксидным ион-радикалом. Таким образом, удается восстановить поставку субстрата для комплекса IV, нарушенную в результате инактивации в комплексе III.
Однако относительный субстратный дефицит вскоре сменяется на абсолютный. Последнее обстоятельство связано с повреждением мембранных структур. По мере поэтапного выключения в условиях гипоксии отдельных комплексов дыхательной цепи наблюдается последовательное снижение сопрягающих функций митохондрий. Открываются протонные каналы во внутренней мембране митохондрий, что обеспечивает на время поступление свежих партий макроэргов. И за их появление приходится платить все более дорогую цену. В результате набухания митохондрий и дальнейшего увеличения размера пор из матрикса митохондрии в цитоплазму клетки перемещаются различные субстраты и низкомолекулярные белки, включая цитохром С. Потере последнего способствует снижение мембранного потенциала на митохондриальной мембране. Как известно, молекула фермента имеет избыточный положительный заряд и удерживается на внутренней стороне митохондриальной мембраны преимущественно за счет электростатических сил притяжения. Молекулы цитохрома С, мере снижения величины мембранного потенциала, начинают покидать поверхность мембраны и комплекс IV лишается своего субстрата. Дыхательная активность в этом случае полностью подавляется и клетка гибнет. Как правило, на практике происходит сочетание несколько видов гипоксий.
Борьба с гипоксей за энергообеспечение клетки, таким образом, складывается из устранения причин приведших к ней (если это возможно) и поставке пластических материалов для энергетических субстратов.
Антигипоксанты
Антигипоксантами называют средства, улучшающие утилизацию организмом циркулирующего в нем кислорода, снижающие потребность в кислороде органов и тканей и, тем самым, способствующие повышению устойчивости тканей организма к кислородной недостаточности. Исследования убедительно свидетельствуют, что наиболее перспективным в борьбе с гипоксией в спорте является использование фармакологических средств, с целью воздействия на митохондриальные комплексы.
Воздействуя, на все комплексы дыхательной цепи или усиливая эффективность отдельных звеньев, удается повысить устойчивость организма к гипоксии.
Условно антигипоксанты могут быть разделены на группы:
– препараты непосредственно антигипоксического действия;
– корригирующие метаболизм клетки:
мембранопротекторного действия,
прямого энергизирующего действия (влияющие на окислительно-восстановительный потенциал клетки, цикл Кребса и комплексы дыхательной цепи митохондрий);
– действующие на транспортную функцию крови:
повышающие кислородную емкость крови,
повышающие сродство гемоглобина к кислороду,
вазоактивные вещества эндогенной и экзогенной природы.
Схема 4. Применение антигипоксантов
Циклические виды спорта– Базовый этап. Этап специальной подготовки. Предсоревновательный этап. Соревнование.
Скоростно-силовые– Базовый этап. Этап специальной подготовки.
Единоборства – Базовый этап. Этап специальной подготовки. Соревнование.
Координационные– Нет.
Спортивные игры– Этап специальной подготовки. Соревнование.
В качестве антигипоксантов может использоваться диетическая коррекция в сторону и активные вещества следующих растений: Боярышник кроваво-красный (настой, настойка цветков, плодов), Календула лекарственная (сок, настой цветков), Крапива двудомная (сок листьев, настой листьев), Мелисса лекарственная (настой листьев), Рябина обыкновенная (сок плодов), Смородина черная (сок плодов, настой плодов, листьев).
Гипоксен
Антигипоксант. Механизм действия на клетки заключается в снижении потребления тканями кислорода, его более экономном расходовании в условиях гипоксии.
Фермент дыхательной цепи синтетической природы. Обладая высокой электронно-обменной емкостью за счет полифенольной структуры молекулы, гипокссен оказывает шунтирующее действие на стадии образования молочной кислоты из пировиноградной кислоты, образуя Ацетил КоА, который затем вовлекается в цикл трикарбоновых кислот. Гипоксен на молекулярном уровне облегчает тканевое дыхание в условиях гипоксии за счет способности непосредственно переносить восстановленные эквиваленты к ферментным системам. Гипоксен многократно компенсирует недостаток убихинона в условиях гипоксии, так как содержит большое количество функциональных центров. Таким образом, компенсируется деятельность митохондриальной дыхательной цепи при наличии повреждений на ее участках.
Антиоксидантное действие гипоксена связано с его полифенольной структурой, которая защищает мембраны клеток и митохондрий от разрушительного воздействия свободных радикалов, образующихся в процессе перекисного окисления липидов (ПОЛ). Этот патологический процесс запускается при экстремальных физических и психоэмоциональных воздействий на организм.
Гипоксен – антигипоксант, который улучшает переносимость гипоксии за счет увеличения скорости потребления кислорода митохондриями и повышения сопряженности окислительного фосфорилирования.
Будучи препаратом прямого действия, может обеспечить кислородом любую клетку за счет малых размеров собственных молекул. В связи с этим, его применение возможно при всех видах гипоксии.
Экономное расходование энергетических запасов происходит за счет переведения с гликолитического на аэробное окисление энергетических субстратов, т. е. на более выгодный (щадящий) механизм обмена.
Гипоксен – водорастворимый антиоксидант, обладая высокой энергетической емкостью, ставит большое количество электронных ловушек. Окислительно-восстановительный потенциал гипоксена 680, коэнзима Q10 – 122.