Чтение онлайн

на главную

Жанры

Космические двигатели будущего
Шрифт:

Длительность тяги двигателя зависит от длительности светового импульса. Так, например, для создания тяги в течение 800 с (давление газов на основание ракеты достигает 3 МПа) необходимо подавать световой импульс с плотностью потока энергии 2 · 107 Вт/см2 и длительностью 10–6 с, при этом скорость по окончании разгона достигнет 8 км/с. Поскольку тяга всегда перпендикулярна срезу сопла двигателя, направление луча лазера не обязательно должно совпадать с направлением продольной оси ракеты.

Еще один метод создания тяги, использующий поглощение лазерного излучения пригоден

для разгона космического аппарата на атмосферном участке траектории. Он был предложен группой исследователей из ФИАНа под руководством А. М. Прохорова в 1973 г. В этом варианте излучение без существенного поглощения проходит через атмосферу и попадает на параболическую отражающую поверхность, которая находится в хвостовой части летательного аппарата и жестко с ним связана. Интенсивность излучения в фокальной области этой поверхности должна превышать порог, при котором происходит электрический пробой находящегося там воздуха. Тяга возникает без использования какого-либо другого топлива, кроме атмосферного воздуха. Если между импульсами лазера обеспечивается смена воздуха, то двигатель работает как лазерный пульсирующий воздушно-реактивный двигатель.

Рис. 11. Лазерный пульсирующий ВРД: 1 — параболическая оболочка с полированной внутренней поверхностью, 2 — фокус параболоида, 3 — пробой воздуха, 4 — светодетонационная волна, 5 — лазерный луч

Схематическое представление о лазерном пульсирующем воздушно-реактивном двигателе дает рис. 11. Лазерный луч, падающий на полированную внутреннюю поверхность, фокусируется с образованием потока высокой интенсивности. Следующий за этим пробой воздуха возбуждает ударную волну, которая распространяется по направлению к выходному срезу сопла. Причем все высокое давление газа за ней преобразуется в силу, действующую на стенки сопла, т. е. тягу.

Лазерный МГД-двигатель. В рамках работ по анализу перспективных двигателей для одноступенчатого транспортного корабля в США проведены исследования по созданию МГД-двигателя с использованием лазера. Основное преимущество такого двигателя, по сравнению с лазерным воздушно-реактивным двигателем, заключается в том, что за счет ускорения рабочего тела с помощью электродинамических сил предоставляется возможность получения высоких скоростей истечения реактивной струи. В качестве рабочего тела используется плазма, получаемая из атмосферного воздуха; источник энергии — лазерные генераторы орбитальных или наземных станций, вдоль которых движется транспортный-космический корабль.

МГД-двигатель транспортного космического корабля с площадью поперечного сечения, равного площади поперечного сечения ракеты-носителя «Сатурн-5», имеет впереди приемник лазерного излучения, за ним кольцевой воздухозаборник. Из воздухозаборника воздух попадает в ионизационную камеру, где под воздействием лазерного излучения ионизуется и превращается в плотную плазму. Основная часть лазерного излучения не поглощается в образовавшейся плазме, а отражается на стенки, вдоль которых размещены преобразователи лазерного излучения в электрический ток. Вырабатываемая электроэнергия используется для создания тяги, подобно тому, как это делается в торцевых плазменных двигателях: плазма ускоряется силой, возникающей в результате взаимодействия электрического тока с собственным магнитным полем. Струя плазмы, вылетающая из двигателя, создает реактивную тягу.

Анализ рабочих параметров проводился применительно к величине орбитальной массы транспортного космического корабля 22 т: ток 360 кА — на уровне Земли, 600 кА (максимум) — при максимальной тяге для скорости полета 500 м/с и при орбитальной скорости 280 м/с, скорость истечения реактивной струи заряженных частиц несколько сотен метров в секунду у Земли и 460 км/с на орбите. Мощность лазерного излучения быстро возрастает до 1,35 ГВт при разгоне космического корабля до достижения скорости полета 750 м/с, а со скорости полета порядка 1,5 км/с линейно растет до 3,75 ГВт на скорости орбитального полета.

Электромагнитный резонаторный двигатель. В отличие от ранее рассмотренных схем двигателей, в этом двигателе отсутствует рабочее тело, вернее, в его роли выступает электромагнитное излучение. Мы рассматривали уже возможность использования давления электромагнитного излучения для создания тяги в системах типа солнечный парус и выяснили, что при использовании даже такого практически неограниченного источника электромагнитной энергии, каким является Солнце, возможное значение тяги составляет несколько килограммсил.

Можно ли рассчитывать на получение заметной тяги за счет давления электромагнитного излучения при использовании искусственного источника излучения (например, лазера или мощного генератора электромагнитных волн СВЧ-диапазона)?

Рассмотрим подробнее процесс создания тяги за счет давления электромагнитного излучения. Пусть на поверхность падает поток электромагнитного излучения с достаточно большой плотностью на единицу площади. Если бы вся эта мощность могла бы быть преобразована в тягу, величина последней при достаточно развитой поверхности приема излучения могла быть значительной. Однако процесс преобразования энергии электромагнитного излучения в кинетическую энергию космического аппарата обладает той особенностью, что только крайне незначительная часть падающей энергии (а именно W/c, где W — поток энергии; с — скорость света) преобразуется в кинетическую энергию космического аппарата.

Остальная часть энергии снова безвозвратно уходит в космическое пространство. Если бы эту энергию удалось заставить многократно падать на одну и ту же поверхность, существенно можно было бы повысить эффективность преобразования энергии электромагнитного излучения в кинетическую энергию движения космического аппарата. Эта идея реализуется в электромагнитном резонаторном двигателе.

Принципиальная схема электромагнитного резонаторного двигателя (ЭМРД) показана на рис. 12. Разгон космического аппарата осуществляется за счет давления электромагнитного излучения в открытом резонаторе, образуемом зеркалами 2, 3, на зеркало космического аппарата.

Накачка электромагнитного излучения источником 1 в резонатор осуществляется через вентиль 4. Давление электромагнитного излучения в резонаторе во много раз превосходит давление излучения источника (за счет накопления электромагнитного излучения в резонаторе). Разгон аппарата продолжается до полного затухания электромагнитных колебаний в резонаторе после выключения источника 1. При отсутствии бокового рассеяния и потерь в зеркалах и среде энергия электромагнитных колебаний должна полностью переходить в кинетическую энергию космического аппарата.

Поделиться:
Популярные книги

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Аватар

Жгулёв Пётр Николаевич
6. Real-Rpg
Фантастика:
боевая фантастика
5.33
рейтинг книги
Аватар

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

На границе империй. Том 10. Часть 1

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 1

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Мама из другого мира. Делу - время, забавам - час

Рыжая Ехидна
2. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.83
рейтинг книги
Мама из другого мира. Делу - время, забавам - час

Рухнувший мир

Vector
2. Студент
Фантастика:
фэнтези
5.25
рейтинг книги
Рухнувший мир

Правила Барби

Аллен Селина
4. Элита Нью-Йорка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Правила Барби

Дядя самых честных правил 6

«Котобус» Горбов Александр
6. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 6

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4