Чтение онлайн

на главную

Жанры

Космические двигатели будущего
Шрифт:

Насколько это серьезное обстоятельство, можно представить себе из следующего примера. Для излучения тепла в 1 кВт при средней температуре теплосброса в наземных электростанциях 50 °C требуется площадь излучающей поверхности холодильника 1,64 м2. Для электрического двигателя мощностью 100 кВт, что соответствует мощности ЖРД с тягой всего около 30 кгс, и общим КПД двигательной системы 20 % при этой же температуре потребуется холодильник площадью 1300 м2.

Энергия, излучаемая единицей поверхности, пропорциональна четвертой степени температуры, и поэтому для сокращения площади холодильника необходимо повышать его температуру. Поскольку КПД электростанции как тепловой машины пропорционален разности температур источника тепла и холодильника, то для сохранения величины КПД необходимо соответствующее увеличение температуры источника.

Таким образом, общей задачей повышения эффективности как тепловых, так и электрических двигателей является создание высокотемпературного реактора. Потребности в космической энергетике вызвали интенсивные исследования в области высокотемпературного прямого преобразования тепла в электричество.

Наиболее перспективными системами преобразования для космических установок оказались термоэлектронные преобразователи (ТЭП). Принцип работы ТЭП иллюстрируется на рис. 5, где ТЭП представляет собой диод, межэлектродный зазор которого заполнен парами цезия. При высокой температуре катод испускает электроны, которые конденсируются на аноде, заряжая его до отрицательного потенциала относительно катода. В результате между катодом и анодом возникает разность потенциалов, и при замыкании их на нагрузку в цепи идет электрический ток.

Охлаждение катода, вызванное «испарением» электронов и потерями на излучение, компенсируется подводом тепла от ядерного реактора. Тепло, выделяющееся на аноде в результате конденсации электронов и лучистого подогрева со стороны катода, отводится теплоносителем или непосредственно излучением в космическое пространство.

Рис. 5. Принципиальная схема термоэмиссионного преобразователя тепловой энергии в электрическую: 1 — катод, 2 — межэлектродный зазор, заполненный парами цезия, 3 — анод, 4 — нагрузка

Термоэлектронный преобразователь с вольфрамовым катодом может работать при температуре катода до 2500 К и температуре анода 1000–1400 К с удельной мощностью от 5 до 40 Вт/см2 при КПД до 25 %. Недостатком ТЭП является его малое рабочее напряжение (около 0,5 В), и поэтому используется последовательное соединение элементов.

Теоретически температура теплосброса, оптимальная с точки зрения размеров холодильника, должна составлять 75 % от температуры источника тепла. При температурных ограничениях, накладываемых твердотельным реактором, холодильник-излучатель всегда будет если не самой тяжелой, то самой громоздкой частью космической энергоустановки. Для эффективной работы холодильника его поверхность должна иметь температуру, близкую к нижней температуре теплового цикла.

Добиться этого за счет естественной теплопроводности материалов нельзя, необходим принудительный перенос тепла путем циркуляции жидкого или газообразного теплоносителя. При этом появляются дополнительные потери энергии на прокачку теплоносителя, и установка оказывается весьма уязвимой к метеоритному пробою. При больших поверхностях холодильника резко возрастает вероятность попадания метеорита размером, достаточным для разрушения стенки канала с теплоносителем, что приведет к разгерметизации и выходу установки из строя.

Наиболее удачным конструктивным решением, позволяющим обойти эти проблемы (потеря мощности и метеоритный пробой), является использование тепловых труб. Тепловая труба представляет собой канал с циркулирующим теплоносителем, на внутренних стенках которого с зазором располагается так называемый фитиль (в простейшем случае это мелкоячеистая сетка). Предварительно откачанная труба заполняется жидкостью в количестве, достаточном для заполнения зазора между фитилем и стенкой трубы, где она удерживается затем капиллярными силами.

В тепловой трубе различают зоны нагрева, переноса тепла и охлаждения. В холодильнике-излучателе две последние зоны, как правило, совмещены. Тепло, подводимое к зоне нагрева, испаряет жидкость, пары которой проходят через отверстия фитиля во внутреннее пространство трубы и устремляются к зоне охлаждения. Там происходит конденсация жидкости с передачей тепла конденсации стенкам трубы, от которых оно отводится излучением. Жидкость, образовавшаяся в результате конденсации, возвращается капиллярными силами, создающимися в фитиле и в зазоре между фитилем и стенкой трубы, назад в зону нагрева.

Такой процесс теплопередачи настолько эффективен, что, например, сейчас испытаны трубы, передающие тепловой поток 10 кВт на каждый 1 см2 поперечного сечения трубы на расстояние в несколько метров при перепаде температур между концами трубы менее 0,01 К. Это эквивалентно теплопередаче сплошного стержня с коэффициентом теплопроводности, в несколько тысяч раз превышающим соответствующее значение для меди. С тепловыми трубами по возможностям транспортировки тепла могут конкурировать лишь системы с жидкометаллическим теплоносителем, но в них требуются затраты работы на прокачку.

Рис. 6. Схема пылевого холодильника-излучателя: 1 — насос, 2 — теплообменник, 3 — ферромагнитная пыль, 4 — обмотка соленоида, 5 — силовые линии магнитного поля

Из тепловых труб собирается поверхность холодильника-излучателя. Зона подвода тепла может либо непосредственно контактировать с охлаждаемым узлом, либо омываться промежуточным теплоносителем. Поскольку для создания излучающей поверхности нужно использовать много тепловых труб, а их каналы могут быть между собой несвязанными, то повреждение одной или нескольких труб метеоритом лишь несущественно скажется на работе всей установки.

Возможны схемы теплосброса, когда теплоносителем является ферромагнитная пыль (рис. 6), которая прокачивается насосом через теплообменник, снимая отработанное тепло энергоустановки, и выбрасывается во внешнее пространство. Там они захватываются и возвращаются снова на вход насоса. В магнитном поле ферромагнитные частицы, сцепляясь друг с другом, выстраиваются вдоль силовых линий, создавая излучающую оболочку. При достаточной магнитной проницаемости вещества пыли все внешнее магнитное поле оказывается сосредоточенным в этой оболочке и не происходит его бесполезного рассеяния.

Популярные книги

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Особняк Ведьмы. Том 1

Дорничев Дмитрий
1. Особняк
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Особняк Ведьмы. Том 1

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Власть силы-1

Зыков Виталий Валерьевич
5. Дорога домой
Фантастика:
фэнтези
8.11
рейтинг книги
Власть силы-1

Сердце Дракона. Предпоследний том. Часть 1

Клеванский Кирилл Сергеевич
Сердце дракона
Фантастика:
фэнтези
5.00
рейтинг книги
Сердце Дракона. Предпоследний том. Часть 1

Смертник из рода Валевских. Книга 1

Маханенко Василий Михайлович
1. Смертник из рода Валевских
Фантастика:
фэнтези
рпг
аниме
5.40
рейтинг книги
Смертник из рода Валевских. Книга 1

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Сахар на дне

Малиновская Маша
2. Со стеклом
Любовные романы:
современные любовные романы
эро литература
7.64
рейтинг книги
Сахар на дне

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Не грози Дубровскому! Том IX

Панарин Антон
9. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том IX

Сфирот

Прокофьев Роман Юрьевич
8. Стеллар
Фантастика:
боевая фантастика
рпг
6.92
рейтинг книги
Сфирот

Если твой босс... монстр!

Райская Ольга
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Если твой босс... монстр!