Чтение онлайн

на главную

Жанры

Космические рубежи теории относительности
Шрифт:

Поскольку представляется вполне вероятным, что Лебедь Х-1-это чёрная дыра, астрофизики приступили к подробным расчётам, чтобы понять, каким путём эволюция двойной звёздной системы может привести к возникновению чёрной дыры. Ввиду того что обнаружить чёрную дыру можно только по излучению падающего на неё вещества, выброшенного обычным компонентом двойной системы, две звезды должны быть довольно близки друг к другу. Если бы эти звёзды находились друг от друга на большом расстоянии (как это бывает обычно), чёрная дыра не могла бы захватывать достаточно вещества, чтобы началось рентгеновское излучение. Поэтому внимание было сосредоточено на эволюции тесных двойных систем.

РИС. 13.7. Чёрная

дыра в тесной двойной системе. На основании расчётов де Лоора и де Грева изображены основные этапы эволюции тесной двойной системы звёзд. Эта двойная испускает рентгеновское излучение лишь в течение короткого периода за весь свой жизненный цикл.

Пусть две звезды сформировались очень близко одна от другой и образовали тесную двойную систему, обозначенную как стадия 1 на рис. 13.7. Сначала в недрах обеих звёзд шло «горение» водорода, однако более массивная звезда сжигала свой водород быстрее и потому быстрее эволюционировала. Вскоре она заполнила свои пределы Роша и передала большое количество вещества своему компаньону (стадия 2). Вследствие переноса массы второй компонент двойной системы стал теперь более массивной звездой (стадия 3). После вспышки сверхновой образовалась чёрная дыра, если умирающая звезда сохранила достаточную массу, чтобы гравитация пересилила давление газа, иначе получился бы белый карлик или нейтронная звезда (стадии 4 и 5). Получившуюся чёрную дыру было невозможно обнаружить, пока её компаньон не проэволюционировал до стадии, на которой началось испускание сильного звёздного ветра. Лишь тогда чёрная дыра смогла захватить достаточно газа, чтобы образовался диск аккреции, испускающий рентгеновские лучи (стадия 6). Наконец, когда второй компонент проэволюционировал так далеко, что заполнил свои пределы Роша, через внутреннюю точку Лагранжа к чёрной дыре стали поступать огромные количества вещества. Этот поток вещества «забил» выход рентгеновского излучения, и чёрная дыра снова стала ненаблюдаемой (стадия 7).

Описанный сценарий подсказал астрономам, что стадия развития тесной двойной системы, в ходе которой наблюдается рентгеновское излучение, очень кратка. Расчёты показывают, что тесные двойные системы должны испускать рентгеновское излучение в течение менее 0,5% своего времени жизни. Значит, согласно теории вероятности, лишь одна из нескольких сотен тесных двойных систем могла бы давать поддающийся обнаружению поток рентгеновских лучей. На каждый источник типа Лебедя Х-1 может оказаться несколько сотен чёрных дыр, входящих в состав тесных двойных систем, не дающих никакого наблюдаемого излучения.

Анализируя наблюдения звездоподобных источников рентгеновского излучения в ходе поисков чёрных дыр, астрономы пришли к замечательному открытию, о котором стало известно весной 1976 г. С помощью так называемого «Голландского астрономического спутника», запущенного на полярную околоземную орбиту 30 августа 1974 г., астрономы приступили к наблюдениям ряда рентгеновских источников, входящих в 3-й каталог «Ухуру». 28 сентября 1975 г. при наблюдении источника 3U 1820-30 с помощью новых рентгеновских телескопов на борту этого спутника они обнаружили исключительно сильную вспышку рентгеновского излучения. Менее чем за 1 с интенсивность рентгеновского излучения источника 3U 1820-30 возросла примерно в 25 раз. В течение последующих 8 с интенсивность рентгеновского излучения постепенно возвратилась на свой прежний уровень. Были зарегистрированы и новые вспышки того же источника, типичный вид одной из которых приведен на рис. 13.8. Всплеск энергии такой интенсивности до тех пор никогда не отмечался.

РИС. 13.8. Интенсивная вспышка рентгеновского излучения. Зарегистрированы исключительно интенсивные вспышки рентгеновского излучения от источников, находящихся в шаровых скоплениях. Менее чем за 1 с интенсивность рентгеновского излучения возросла в 25 раз. В течение последующих 8 с интенсивность упала до первоначального уровня.

РИС. 13.9. Шаровое скопление NGC 6624. Вспышки рентгеновского излучения исключительной интенсивности были зарегистрированы именно от этого шарового звёздного скопления. Проще всего объяснить эти вспышки, если предположить, что в центре скопления NGC 6624 существует массивная чёрная дыра. Снимок, сделанный Н. Бахколл с короткой экспозицией, позволяет видеть звёзды в центральной части скопления. (С разрешения Н. Бахколл.)

Источник 3U 1820-30 связан с шаровым скоплением NGC 6624. Шаровые скопления (рис. 13.9)-это огромные сферические скопления звёзд; обычно в них содержатся сотни тысяч звёзд. Пытаясь объяснить кратковременную и интенсивную вспышку рентгеновского излучения от шарового скопления, Дж. Гриндлей и X. Гурский из Гарвардского университета (США) пришли к выводу, что в центре скопления NGC 6624 может находиться чрезвычайно массивная чёрная дыра. В самом деле, все данные наблюдений легко можно понять, если предположить, что излучает диск аккреции вокруг чёрной дыры с массой около 500 солнечных. По-видимому, случайная неоднородность в диске аккреции вызвала эту вспышку рентгеновского излучения, проникшую сквозь газовое облако, поперечник которого равняется приблизительно 20 световым секундам.

Вопрос о том, как могут образоваться столь сверхмассивные чёрные дыры, будет несомненно предметом активных теоретических изысканий в течение нескольких следующих лет. Шаровые скопления - это одни из наиболее старых звёздных систем в нашей Галактике. Возможно, что в центрах шаровых скоплений многочисленные чёрные дыры небольших размеров, образующиеся при смерти массивных звёзд на протяжении целых эпох, сливаются, «заглатывая» друг друга. Именно таким объединением примерно сотни меньших чёрных дыр можно было бы объяснить кратковременную интенсивную вспышку рентгеновского излучения источника 3U 1820-30 в скоплении NGC 6624.

14

БЕЛЫЕ ДЫРЫ И РОЖДЕНИЕ ЧАСТИЦ

Возможность существования в космосе чёрных дыр - это одно из самых замечательных предсказаний теоретической физики XX в. Мысль о том, что чёрные дыры должны существовать реально, является прямым выводом из современных представлений об эволюции звёзд. Умирая, массивные звёзды катастрофически сжимаются (коллапсируют) - как бы взрываются внутрь - и порождают область, в которой тяготение настолько сильно, что оттуда не может выйти ничто - даже свет.

При анализе характеристик чёрных дыр, выведенных из теории, было отмечено, что все эти дыры должны обладать массой. Вдобавок к массе они могут обладать также зарядом и (или) моментом количества движения. Вообще говоря, чёрная дыра, которая может существовать реально, имеет, вероятно, ничтожно малый заряд, но вращается очень быстро. Поэтому такую дыру хорошо описывает решение Керра.

Из описанного выше теоретического анализа следует, что полная геометрическая структура даже идеальной чёрной дыры чрезвычайно сложна. Ведь в глобальной структуре пространства-времени дыры объединено множество Вселенных - это видно из диаграмм Пенроуза. В случае простейшей чёрной дыры, которая характеризуется только массой (это шварцшильдовская чёрная дыра, представленная на рис. 9.11 и 9.18), помимо нашей собственной Вселенной существует ещё одна, иная. Ввиду пространственноподобного характера шварцшильдовской сингулярности в эту другую Вселенную невозможно проникнуть из нашей Вселенной, если пользоваться любыми допустимыми (временноподобными) мировыми линиями. Однако, как только у дыры будет либо заряд, либо вращение, сингулярность становится временноподобной, и полная геометрическая структура решений Райснера-Нордстрёма или Керра объединяет бесконечно большое число Вселенных прошлого и будущего (см. рис. 10.10 и 11.14). Свойство решений Керра и Райснера-Нордстрёма включать множество Вселенных приводит к поразительной возможности гипотетических путешествий в чёрные дыры, а из них - во Вселенные будущего, что мы обсуждали в гл. 12. Тем самым появляется возможность машины времени!

«Другие» Вселенные, появившиеся на диаграмме Пенроуза, можно истолковать разными способами. Один способ - это сказать, что на самом деле это разные, отдельные Вселенные, вообще никак не связанные с нашей Вселенной. Столь же приемлема и другая трактовка: ряд этих «других» Вселенных на самом деле являются вариантами нашей собственной Вселенной, но отнесенными к иной эпохе. Иными словами, теоретически не исключено, чтобы одна из «других» Вселенных на диаграмме Пенроуза была нашей Вселенной, скажем, миллиард лет назад, как это показано на рис. 14.1. Смельчак - космонавт мог бы, покинув Землю сейчас и нырнув в чёрную дыру, вынырнуть в нашей же Вселенной в прошлом. Это - путешествие во времени.

Поделиться:
Популярные книги

Гром над Империей. Часть 2

Машуков Тимур
6. Гром над миром
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Гром над Империей. Часть 2

Возвращение Низвергнутого

Михайлов Дем Алексеевич
5. Изгой
Фантастика:
фэнтези
9.40
рейтинг книги
Возвращение Низвергнутого

Отмороженный 5.0

Гарцевич Евгений Александрович
5. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 5.0

Ваше Сиятельство 8

Моури Эрли
8. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 8

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Специалист

Кораблев Родион
17. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Специалист

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Купидон с топором

Юнина Наталья
Любовные романы:
современные любовные романы
7.67
рейтинг книги
Купидон с топором

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев