Космос и хаос. Что должен знать современный человек о прошлом, настоящем и будущем Вселенной
Шрифт:
Исходя из вышесказанного, всю историю Вселенной можно разбить на четыре эпохи и описать четырехчленной формулой следующего вида:...ДС(И) – ФИ – ФМ – ДС... Первое звено этой формулы обозначает фазу инфляции (буква «И» в скобках), а сочетание «ДС» указывает на деситтеровский характер расширения. Хотя о голландском астрономе Виллеме Ситтере мы уже упоминали, необходимо сделать небольшое пояснение. Он был одним из первых ученых, признавших общую теорию относительности, однако стационарная модель Эйнштейна его не устраивала. Вселенная Эйнштейна описывалась римановой геометрией и представляла собой четырехмерную гиперсферу, аналогом которой в трех измерениях может быть поверхность резиновой камеры или воздушного шарика. Такая Вселенная замкнута на себя и не имеет границ, хотя ее объем конечен. Луч света, если он не встречает препятствий, распространялся бы в такой модели по окружности (точнее, по геодезической линии, ибо кратчайшим путем между двумя точками на поверхности
Ситтер предложил динамическую модель пустой и непрерывно расширяющейся Вселенной, похожую на воздушный шарик, который все время надувают. По мере раздувания диаметр шарика постоянно растет, а его геометрия, продолжая оставаться римановской, все более и более приближается к геометрии Евклида. Другими словами, пространство в такой Вселенной становится все более плоским, а луч света движется не по окружности, а по непрерывно расширяющейся спирали. Однако Ситтеру крупно не повезло. Он слишком сильно опередил свое время, и его гипотеза осталась в памяти современников изящным и остроумным математическим казусом. Вселенная Ситтера расширялась по экспоненте (то есть в геометрической прогрессии в зависимости от времени), что в ту пору (в 1917 году) противоречило наблюдениям. А вот предложенная несколькими годами позже модель А. А. Фридмана настаивала на том, что объекты удаляются друг от друга со скоростью прямо пропорциональной расстоянию до них.
Сегодня мы понимаем, что это противоречие мнимое. И Фридман был не дурак, и Ситтер тоже не лаптем щи хлебал: каждый был по-своему прав. В эпоху инфляции пространство росло экспоненциально – в полном соответствии с выкладками Ситтера. А когда энергия поля, распирающего Вселенную, упала до минимума, режим расширения сразу же поменялся. И на стадии излучения (ФИ-фаза), когда Вселенная была раскаленным сгустком горячей плазмы, и на стадии рекомбинации (ФМ-фаза), когда излучение отделилось от вещества, наш мир расширялся пропорционально – по закону Фридмана – Хаббла. А вот когда Вселенная изрядно подросла и остыла, темная энергия снова вступила в свои права. Несколько миллиардов лет тому назад наступила эпоха доминирования темной энергии, которая продолжается до сих пор, и Вселенная снова начала расширяться ускоренно. А поскольку по своим динамическим параметрам современная эпоха почти ничем не отличается от стадии инфляции, А. А. Старобинский предложил назвать ее деситтеровской (аббревиатура ДС в правой части формулы).
Между прочим, проблема темной энергии имеет весьма любопытный философский аспект. До того момента, как сила универсального космологического отталкивания стала доминирующей, а Вселенная начала расширяться ускоренно, успело произойти много разных событий. Прежде чем выйти на режим ускоренного расширения, мир пережил эпоху инфляции (ДС(И) – стадия), фазу излучения (ФИ-стадия) и фазу доминирования темной материи (ФМ-стадия), когда излучение отделилось от вещества. Следовательно, мы имеем полное право предположить, что и фазе инфляции в левой части формулы предшествовали некие события.
А. А. Старобинский пишет:
Все 4 стадии и переходы между ними, включенные в эту формулу, могут быть рассчитаны теоретически и исследованы по существующим наблюдательным данным. Однако можно ли думать, что эта цепь заключает в себе всю эволюцию нашей Вселенной в прошлом и будущем? Полагаю, что нет. Как раз наоборот, замечательная качественная аналогия между ДС(И) – и ДС-стадиями, объясненная выше, подсказывает нам, что эта цепь – лишь маленький кусочек чего-то существенно большего, может быть, даже бесконечного. Посмотрим вдоль формулы справа налево. Мы видим, что перед ДС-стадией была длинная и разнообразная предыстория. Тогда естественно ожидать, что и ДС(И) – стадия имела свою предысторию (многоточие слева от формулы). Теперь взглянем слева направо. Очевидно, что ДС(И) – стадия была неустойчивой, первичная темная энергия распалась в другие (в том числе в обычные) виды материи. Почему тогда современная темная энергия обязана быть стабильной и не может превращаться в другие виды материи в будущем (многоточие справа от формулы)?
Разумеется, продолжительность ДС-стадии многократно превышает фазу инфляции, поскольку квантовые системы с меньшей полной энергией гораздо более устойчивы. Что же касается доинфляционной истории нашего мира, то большинство современных космологических моделей запрещают многоточие слева от формулы и настаивают на возникновении Вселенной из ничего (from nothing). Однако, по мнению А. А. Старобинского, существует бесчисленное множество других сценариев, в которых ДС(И) – стадии предшествует нечто. Он пишет, что вместе с Я. Б. Зельдовичем они сформулировали прямо противоположную концепцию рождения Вселенной «из чего угодно» (from anything), однако, ввиду крайнего ее экстремизма, не рассматривает ее подробно. Одним словом, попытки узнать, что предшествовало фазе инфляции, не прекращаются, и быть может, нас ждет на этом пути еще много интересных открытий. Так или иначе, но мир оказался неизмеримо сложней, чем представлялось ученым еще каких-нибудь 30 лет назад.
А что можно сказать об отдаленном будущем нашей Вселенной? Что век грядущий нам готовит? На этот вопрос существует несколько ответов, ибо физическая природа темной энергии – до сих пор тайна за семью печатями. В простейшем случае, если энергия вакуума положительна и не меняется со временем, Вселенная будет расширяться неограниченно. Ночное небо начнет мало-помалу пустеть, так как все больше объектов будет уходить за горизонт событий, и через 10–20 миллиардов лет в распоряжении человечества останутся наша Галактика (Млечный Путь), соседняя туманность Андромеды да еще несколько галактик из так называемой Местной группы. Через 1014лет перестанут рождаться новые звезды и во Вселенной останутся только тела, почти не дающие света, – белые и коричневые карлики, нейтронные звезды и черные дыры. Но в конце концов погаснут и умрут все звезды, и через 1037лет в непомерно раздувшемся космосе нельзя будет найти ничего, кроме черных дыр и элементарных частиц. Но ведь ничто не вечно. За счет квантовых процессов черные дыры все-таки излучают, хотя и очень медленно, а потому рано или поздно они тоже испарятся. Это событие произойдет, когда возраст Вселенной составит 10100лет, и все мироздание окажется заполненным чрезвычайно разреженным газом из стабильных элементарных частиц – электронов, трех сортов нейтрино и, возможно, протонов. Мир вновь станет пуст, как библейская земля в начале начал, поскольку расстояние между двумя частицами будет намного превосходить размеры современной Вселенной.
Что и говорить, душераздирающее зрелище. Однако это еще цветочки, потому что существуют куда более катастрофические сценарии нашего далекого будущего. Один из них показывает, что в мире вообще ничего не останется. Дело в том, что если обычное расширение Вселенной в виде непрерывного прироста ее пространства не порождает никаких сил, действующих на физические тела, то темная энергия ведет себя совершенно иначе. Ускоренное раздувание аналогично появлению некоей силы, растягивающей все объекты. Сегодня ее величина исчезающе мала – в 1030раз слабее тяготения на поверхности Земли. Если ускорение будет неуклонно нарастать по экспоненте, то, в конце концов, дело закончится не только разрушением всех физических тел, но даже элементарных частиц, из которых построена вся материя. Вселенная превратится в распухающее ничто, опустеет в самом буквальном смысле слова. Эта модель, получившая название Большого разрыва (Big Rip по-английски), была предложена в 2003 году в статье Р. Р. Колдвелла, М. Камионковского и H. H. Вайнберга «Фантомная энергия и космический конец света». Однако не все так безнадежно: другие астрофизики, например уже знакомый нам Стивен Хокинг, полагают, что расширение рано или поздно сменится сжатием. Откровенно говоря, подобная перспектива тоже не сулит человечеству ничего хорошего, но это уже отдельная песня.
Впрочем, грядущие годы таятся во мгле, как однажды написал классик, а потому не станем гадать на кофейной гуще, но оборотимся лицом к прошлому. В предыдущей главе поминалась теория суперструн, которая вроде бы непротиворечиво увязывает в одно целое квантовую механику и общую теорию относительности. Настало время поговорить о ней подробнее, тем более что струнные теории в разных изводах сегодня весьма популярны и очень живо обсуждаются.
Для начала вспомним о четырех типах фундаментальных взаимодействий – электромагнитном, сильном, слабом и гравитационном, под знаком которых развивается этот несовершенный мир. Вкратце напомню вам, читатель, что электромагнетизм был исчерпывающе описан английским физиком Джеймсом Максвеллом в 1873 году. Если бы не эта сила, построенная на противоборстве двух полярных начал (заряды одного знака отталкиваются, а разноименные – притягиваются), ни атомы, ни молекулы не смогли бы существовать. Химия и биология так или иначе сводятся к электромагнитному взаимодействию. Телевидение и радио, благодаря которым мы узнаем о цунами в Индонезии, эскападах недобитых талибов в предгорьях Гиндукуша или очередном взлете цен на нефть на мировых рынках, тоже обязаны своим существованием феномену электромагнетизма.
Сильное взаимодействие удерживает протоны и нейтроны внутри атомного ядра, противодействуя силам кулоновского отталкивания, а также склеивает воедино субъядерные частицы – кварки, из которых построена вся материя. Слабое взаимодействие (слабее его только гравитационное) отвечает за превращения элементарных частиц в микромире и некоторые виды радиоактивного распада.
Наконец, гравитационное взаимодействие (оно самое слабое из всех – электромагнитное отталкивание противоположных зарядов превышает стягивающую силу гравитации в 1043раз) вынуждает тела притягиваться друг к другу и имеет только один знак – массу (что такое «масса» и откуда она берется, не знает никто). Но электромагнитные силы действуют только на заряженные объекты, а гравитация – на все тела без исключения, обладающие массой. А поскольку макроскопические структуры почти всегда электрически нейтральны, сила всемирного тяготения приобретает определяющую роль в космологических масштабах.