Чтение онлайн

на главную

Жанры

Краткая история химии. Развитие идей и представлений в химии
Шрифт:

В 1733 г. французский химик Шарль Франсуа де Систернэ Дюфе (1698—1739) установил, что существуют два вида электрических зарядов: один из них возникает на стекле («стеклянное электричество»), а другой — на янтаре («смоляное электричество»). Вещество, несущее заряд одного вида, притягивает вещество, несущее заряд другого вида, но два одинаково заряженных вещества взаимно отталкиваются.

Бенджамин Франклин (1706—1790), великий американский ученый, выдающийся государственный деятель и дипломат, в сороковых годах XVIII в. выдвинул новую гипотезу. Он предположил, что существует единый электрический флюид и что вид электрического заряда зависит от содержания этого флюида. Если содержание электрического флюида превышает некоторую норму, вещество несет заряд одного вида, если же этого флюида содержится меньше нормы, вещество несет заряд другого вида.

Франклин считал, что стекло содержит электрического

флюида больше нормы и поэтому несет положительный заряд. Смола же, по его мнению, несет отрицательный заряд. Термины, предложенные Франклином, используются до сих пор, хотя в них вкладывается иной смысл, так как в настоящее время представления о причинах прохождения тока противоположны тем, которые были приняты во времена Франклина.

В 1800 г. итальянский физик Алессандро Вольта (1745—1827) сделал важное открытие. Он установил следующее: два куска металла (разделенные растворами, способными проводить электрический заряд) можно расположить таким образом, что по соединяющей их проволоке пойдет «ток электрических зарядов», или электрический ток. Вольта сконструировал первую электрическую батарею, представлявшую собой столб из 20 пар металлических пластинок двух разных металлов. Такая батарея, известная под названием Вольтова столба, явилась первым источником постоянного тока. Электрический ток в такой батарее образуется в результате химической реакции, в которой участвуют оба металла и разделяющий их раствор.

Результаты работы Вольта явились первым несомненным доказательством того, что между химическими реакциями и электричеством существует определенная связь. Однако это предположение было полностью разработано только в следующем столетии.

Если в результате химической реакции возникает электрический ток, то естественно предположить, что и электрический ток может изменять материю и вызывать химическую реакцию. И действительно, всего через шесть недель после первого описания Вольтой своей работы два английских химика — Уильям Николсон (1753—1815) и Энтони Карлайл (1768—1840) продемонстрировали наличие такой обратной зависимости. Пропустив электрический ток через воду, они обнаружили, что на электропроводящих полосках металла, опущенных в воду, появляются пузырьки газа. Как выяснилось, на одной из полосок выделяется водород, на другой — кислород.

В сущности Николсон и Карлайл при помощи электрического тока разложили воду на водород и кислород. Другими словами, они впервые провели электролизводы. Если Кавендищ соединил водород и кислород в воду, то Николсон и Карлайл осуществили обратную реакцию. Выделявшиеся по мере разложения воды водород и кислород они собирали в отдельные сосуды. Последующие измерения показали, что объем водорода вдвое превышает объем кислорода. Конечно, водород легче, чем кислород, но поскольку объем водорода был больше, следовательно, в молекуле воды атомов водорода должно быть больше, чем атомов кислорода. Объем выделившегося водорода вдвое превысил объем кислорода, поэтому вполне естественно было предположить, что каждая молекула воды содержит два атома водорода и один атом кислорода, а не по одному атому каждого элемента, как считал Дальтон.

Таким образом, проведенный эксперимент подтвердил предположение о том, что одна часть водорода (по весу) соединяется с 8 частями (также по весу) кислорода. А если это предположение справедливо, то, следовательно, 1 атом кислорода в 8 раз тяжелее двух атомов водорода взятых вместе и, таким образом, в 16 раз тяжелее одного атома водорода. Если вес водорода принять за единицу, то атомный вес кислорода составит 16, а не 8.

Гипотеза Авогадро [41]

[41] См.: Быков Г. В. Амедео Авогадро, Очерк жизни и деятельности.— М.: Наука, 1970, 184 с.

Результаты исследований Николсона и Карлайла были подкреплены работой французского химика Жозефа Луи Гей-Люссака (1778—1850). Гей-Люссак установил, что два объема водорода, соединяясь с одним объемом кислорода, образуют воду. Далее, он нашел, что когда газы образуют соединение, соотношение их объемов всегда представляет собой соотношение кратных чисел. В 1808 г. Гей-Люссак опубликовал сообщение об открытом им законе объемных отношений.

В свете этого закона представлялось вполне допустимым, что молекула воды состоит из двух атомов водорода и одного атома кислорода. Используя этот закон, можно было также решить, наконец, сколько атомов азота и водорода в аммиаке. А после того как было установлено, что в молекуле аммиака содержится один атом азота и три (а не один) атом водорода, выяснилось, что атомная масса азота равна не примерно 5, а 14.

Рассмотрим теперь водород и хлор. Эти два газа, соединяясь, образуют третий газ — хлорид водорода. При этом один объем водорода соединяется с одним объемом хлора, и вполне можно предположить, что молекула хлорида водорода состоит из одного атома водорода и одного атома хлора. Предположим теперь, что газообразный водород и газообразный хлор состоят из одиночных атомов, далеко отстоящих друг от друга, и что эти атомы соединяются попарно, образуя молекулы хлорида водорода, также далеко отстоящие друг от друга. Начнем со 100 атомов водорода и 100 атомов хлора. Эти 200 далеко отстоящих друг от друга частиц соединяются попарно и образуют 100 молекул хлорида водорода. В результате от 200 далеко отстоящих друг от друга частиц (атомов) остается только 100 также удаленных друг от друга частиц (молекул). Если пространство между ними везде одинаково, то тогда один объем водорода и один объем хлора в сумме (всего два объема) должны были бы составить только один объем хлорида водорода. Однако фактические данные говорят о том, что один объем водорода, соединяясь с одним объемом хлора, дает два объема хлорида водорода. Поскольку два объема газа, взятые для проведения опыта, остаются теми же двумя объемами после завершения опыта, то, следовательно, число частиц должно оставаться одним и тем же и до начала и после завершения опыта.

Предположим далее, что газообразный водород существует не в виде отдельных атомов, а в виде молекул водорода, каждая из которых состоит из двух атомов, а газообразный хлор состоит из молекул хлора, также двухатомных. В этом случае 100 атомов водорода — это 50 далеко отстоящих друг от друга частиц водород-водород, а 100 атомов хлора — это 50 далеко отстоящих друг от друга частиц хлор-хлор, т. е. всего 100 частиц. При образовании хлорида водорода происходит перегруппировка частиц: возникает атомная комбинация водород-хлор. При этом 100 атомов водорода и 100 атомов хлора дают 100 молекул хлорида водорода (каждая из молекул содержит по одному атому каждого вида). Следовательно, 50 молекул водорода и 50 молекул хлора образуют 100 молекул хлорида водорода. Этот вывод совпадает с результатами наблюдений, которые показывают, что один объем водорода и один объем хлора дают два объема хлорида водорода.

Все это вполне допустимо, если, как указывалось выше, частицы различных газов независимо от того, состоят ли они из одиночных атомов или из комбинаций атомов, равно удалены друг от друга и если расстояние между ними достаточно велико. В этом случае равное число частиц газа (при данной температуре) занимает равные объемы независимо от вида газа.

Первым, кто обратил внимание на необходимость предположения о том, что в газах равное число частиц занимает равные объемы, был итальянский химик Амедео Авогадро (1776—1856). Поэтому предположение, выдвинутое им в 1811 г., получило название гипотезы Авогадро.

Если твердо помнить эту гипотезу, то можно провести четкое различие между атомами и молекулами водорода (пары атомов), а также между атомами и молекулами других газов. Тем не менее еще в течение полувека после смерти Авогадро химики пренебрегали этой гипотезой и не проводили различия между атомами и молекулами важнейших газообразных элементов. Неопределенность наблюдалась и при определении атомных весов некоторых наиболее важных элементов.

К счастью, установить правильные атомные веса можно и другими способами. Например, в 1818 г. французский химик Пьер Лун Дюлонг (1785—1838) и французский физик Алексис Терез Пти (1791—1820) определили атомный вес одного из таких элементов [42] . Они обнаружили, что удельная теплоемкость элементов (количество теплоты, которое необходимо подвести к единице массы вещества, чтобы повысить его температуру на один градус) обратно пропорциональна атомному весу. Иными словами, если атомный вес элемента xвдвое больше атомного веса элемента у, то после поглощения одинаковыми весовыми количествами элементов одинакового количества тепла температура уповысится вдвое больше, чем температура x. Это и есть закон удельных теплоемкостей.

[42] Работа Дюлонга и Пти была опубликована в 1819 г.— Прим. перев.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Идеальный мир для Социопата 6

Сапфир Олег
6. Социопат
Фантастика:
боевая фантастика
рпг
6.38
рейтинг книги
Идеальный мир для Социопата 6

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

"Фантастика 2024-104". Компиляция. Книги 1-24

Михайлов Дем Алексеевич
Фантастика 2024. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Фантастика 2024-104. Компиляция. Книги 1-24

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Авиатор: назад в СССР 11

Дорин Михаил
11. Покоряя небо
Фантастика:
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 11

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря