Чтение онлайн

на главную - закладки

Жанры

Краткая история планеты Земля. Горы, животные, огонь и лед
Шрифт:

Рис. 6.2. Количество радиоактивного изотопа углерод 14 (здесь оно показано в произвольных единицах), содержащееся, например, в растении, остается постоянным, пока оно живо и обменивается СO2 с атмосферой. После того как оно умирает (отмечено цифрой 0 на графике), содержание в нем углерода 14 уменьшается наполовину каждые 5700 лет, в связи с его распадом до нерадиоактивного азота. Точки на кривой расположены через интервал времени, равный времени полураспада. Очевидно, что после пяти или шести таких периодов остается очень мало углерода 14. Тот же процесс показан и в верхней части рисунка в условной форме исчезновения углерода 4 из первоначально полного стакана.

Хорошим примером изотопов последней категории является углерод 14 — изотоп, столь знакомый многим в связи с углеродным (или карбоновым) методом датировки. Он имеет короткий (по геологическим масштабам) период полураспада, равный 5700

лет, так что никакое количество углерода 14, обнаруживаемое в наши дни, не может быть остатком, сохранившимся со времен образования Земли (как должно быть очевидно из рис. 6.2). Наоборот, запасы этого изотопа на нашей планете постоянно пополняются в результате ядерных реакций, протекающих в атмосфере. Это оказалось счастливым обстоятельством для археологов и климатологов, которые широко используют углерод 14 для датировки.

Ядерные реакции, благодаря которым в земной атмосфере образуется углерод 14, вызываются космическим излучением, то есть потоками элементарных частиц — преимущественно отдельных атомов, — которые пронизывают космическое пространство и часто падают на Землю, пронизывая ее атмосферу. Многие из этих атомов имеют своим источником Солнце и разгоняются, устремляясь в космос в больших количествах в моменты, когда огромные языки пламени — солнечные протуберанцы — выбрасываются Солнцем на миллионы миль от солнечной поверхности. Некоторая часть космического излучения с еще большими энергиями частиц — это путешественники из областей Галактики, далеко отстоящих от Солнечной системы. Но независимо от их происхождения, когда очень быстрые частицы космического излучения сталкиваются с атомами земной атмосферы, возникают ядерные реакции, подобно тому, как это происходит в созданных человеком ускорителях элементарных частиц. Побочным продуктом этих реакций являются нейтроны; когда произведенный космическим лучом нейтрон ударяется в устойчивый атом изотопа азота под номером 14 и захватывается им (азот является самым мощным элементом в составе атмосферы), выбивая из него один протон, возникает радиоактивный углерод 14.

Большая часть углерода в составе земной атмосферы связана с кислородом и образует углекислый газ (диоксид карбона). Такова судьба и образованных с помощью космических лучей атомов радиоактивного углерода 14, так что в каждой порции углекислого газа, взятого из атмосферы, содержится постоянная доля атомов углерода 14. Вследствие того, что в живых организмах углерод, входящий в их состав, в конечном итоге образуется из атмосферы с помощью происходящего в растениях фотосинтеза, он содержит ту же постоянную долю углерода 14, что и атмосфера. Это является основой для использования этого радиоактивного изотопа в качестве хронометра.

Датирование с помощью углерода 14 было применено для определения возраста Туринской плащаницы, раковин из мусорных куч североамериканских индейцев, доисторических извержений вулканов на Гавайских островах. Как же конкретно производится датирование определенных образцов с помощью этого метода? Во-первых, нужно найти материал, который содержит углекислоту (и значит, углерод 14), заимствованную из атмосферы. Для этого подойдет все, что угодно, лишь бы оно содержало углерод и было живо во время события, время которого мы хотим определить, хотя некоторые вещества более пригодны для этого, чем другие. Часто используются растительные остатки, как, например, древесина или даже древесный уголь. Когда растение умирает или падает под ударами топора, или сгорает в лавовом потоке и поглощается им, оно перестает связывать углерод из атмосферы; начиная с этого момента содержащийся в нем радиоактивный углерод 14 начинает распадаться в соответствии с хорошо известной величиной — постоянной распада и с графиком, показанным на рис. 6.2. Если образец старого дерева имеет возраст, точно соответствующий периоду полураспада углерода 14, то есть 5700 лет, то он содержит в точности 50% количества этого изотопа, которое содержится в современных растениях; если его возраст равен двойному периоду полураспада — то 25% и так далее. Из рис. 6.2 очевидно, что после времени, равного нескольким периодам полураспада, остается не так уж много радиоактивного изотопа. И все же современная техника позволяет определить исключительно малые количества углерода 14 и таким образом измерить возраст образцов до сорока или пятидесяти тысяч лет. Это составляет более восьми периодов полураспада, поэтому в образце такого возраста содержится 1/254 часть первоначального количества углерода 14.

Единственная неопределенность при использовании этого метода заключается в содержании углерода 14 в древней атмосфере — оно, возможно, отличалось от сегодняшнего. Однако существуют различные способы проверить эту возможность — например, путем

калибровки возраста, определенного радиокарбоновым методом, да и с помощью других методов. Далее при отмеченных флуктуациях содержания углекислоты в древней атмосфере эти проверки показали, что в общем и целом допущение о приблизительно постоянном содержании углерода 14 в атмосфере хорошо выдерживается для того отрезка времени, для которого пригоден этот метод.

Это краткое описание дает пример того, как можно использовать радиоактивные изотопы для определения возраста объектов или событий. Тем не менее период полураспада углерода 14 столь мал, что этот изотоп можно использовать для установления хронологии лишь очень недавнего прошлого. Для остальной же части геологической шкалы времени применяются гораздо более долгоживущие изотопы; способы их использования тоже различаются.

В главе 2 мы упоминали об изотопах свинца и об их полезности для измерения возраста Земли и датирования зерен устойчивого к выветриванию минерала циркона. Мы узнали, что различные изотопы свинца являются устойчивыми конечными продуктами распада радиоактивных урана и тория. Ураново-свинцовый метод был по существу первым из всех применяющихся сейчас способов определения возраста пород с помощью радиоактивного распада; он все еще является одним из самых полезных в геологии. Другие общеупотребительные пары изотопов используют распад изотопа калия до изотопа газа аргона или распад рубидия 87 до стронция 87. Исходный изотоп в каждом случае является широко распространенным компонентом пород земной коры; период его полураспада достаточно длинный, чтобы метод можно было применить для всей истории Земли.

В принципе методы, использующие долгоживущие радиоактивные изотопы, подобны методу, использующему углерод 14, но есть некоторые важные отличия. Одно из них заключается в том, что исходные («родительские») изотопы не возникают на Земле непрерывно и постоянно; количество их постепенно уменьшается в результате радиоактивного распада. Поэтому сейчас на Земле имеется значительно меньше урана, чем в период формирования — большая часть его распалась, превратившись в свинец.

Для обычно используемых методик датирования процедура состоит в измерении количества «дочернего» изотопа, который образовался за время жизни образца, а не «родительского», оставшегося в образце, как при использовании углерода 14. Тем самым мы избегаем необходимости знать количество родительского изотопа, присутствовавшего в образце в момент, когда были запущены радиоактивные часы. Поскольку каждый «родительский» атом распадается, производя «дочерний», то количество последних всегда равно количеству распавшихся «родительских» атомов.

Хорошим примером того, как работает эта методика, является калий-аргоновый метод. Калий 40 — единственный радиоактивный из трех встречающихся в природе изотопов калия. Хотя калий 40 не так уж распространен и составляет всего около 0,01 процента от общего количества атомов калия, сам калий является обычным компонентом минералов земной коры, что делает его весьма полезным для датирования горных пород — как имеющих возраст Земли, так и молодых, около 100 000 лет или даже меньше. Дочерним изотопом для этой реакции распада является аргон 40 — газ; хотя аргон не столь уж редкий элемент — в атмосфере он содержится в количестве около одного процента, — большинство изверженных пород, особенно вулканические породы, прорвавшиеся на поверхность земли, при своем образовании вовсе не содержат аргон 40. Любой аргон, который был растворен в расплавленной лаве, просто уходит в атмосферу во время извержения вулкана. Поэтому все количество аргона 40, определенное в древней вулканической породе, должно было образоваться в результате радиоактивного распада калия 40 за время жизни образца. Поскольку период полураспада калия 40 хорошо известен, не так уж сложно вычислить время, необходимое для накопления этого количества аргона. Некоторые самые обычные минералы, как, например, полевой шпат или слюда, богаты калием и поэтому представляют собой особенно чувствительные хронометры…

Другие долгоживущие радиоактивные изотопы, используемые в геохронологии, применяются аналогичным образом, хотя каждый имеет свои особенности. Поскольку в этих методах используются разные химические элементы, некоторые лучше, чем другие, подходят для датирования конкретных пород. Однако часто случается, что одну и ту же породу можно датировать разными методами. Хотя используемые при этом радиоактивные изотопы могут иметь весьма различные значения периода полураспада, а «родительские» и «дочерние» изотопы — совершенно разные химические свойства, возраст обычно определяется один и тот же. Это придает геологам уверенность в правильности каждого метода, а также подтверждает точность определения периодов полураспада, используемых в расчетах.

Поделиться:
Популярные книги

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР

Энфис. Книга 1

Кронос Александр
1. Эрра
Фантастика:
боевая фантастика
рпг
5.70
рейтинг книги
Энфис. Книга 1

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Возвращение Низвергнутого

Михайлов Дем Алексеевич
5. Изгой
Фантастика:
фэнтези
9.40
рейтинг книги
Возвращение Низвергнутого

Последний Паладин. Том 5

Саваровский Роман
5. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 5

Вечная Война. Книга V

Винокуров Юрий
5. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
7.29
рейтинг книги
Вечная Война. Книга V

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Золотая осень 1977

Арх Максим
3. Регрессор в СССР
Фантастика:
альтернативная история
7.36
рейтинг книги
Золотая осень 1977

Доктора вызывали? или Трудовые будни попаданки

Марей Соня
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Доктора вызывали? или Трудовые будни попаданки

Приручитель женщин-монстров. Том 2

Дорничев Дмитрий
2. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 2

Его наследник

Безрукова Елена
1. Наследники Сильных
Любовные романы:
современные любовные романы
эро литература
5.87
рейтинг книги
Его наследник

Не грози Дубровскому! Том Х

Панарин Антон
10. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том Х

Игра топа. Революция

Вяч Павел
3. Игра топа
Фантастика:
фэнтези
7.45
рейтинг книги
Игра топа. Революция