Краткая история почти всего на свете
Шрифт:
Но даже при этом космические корабли в верхней атмосфере должны управляться с осторожностью, особенно при возвращении на Землю, как это показала в феврале 2003 года трагедия с космическим челноком «Колумбия». Хотя атмосфера и представляется очень тонкой, если корабль спускается под слишком большим углом — более 6 градусов — или слишком быстро, он столкнется с таким количеством молекул, что их сопротивление приведет к воспламенению [237] . И наоборот, если спускающийся корабль войдет в стратосферу под слишком малым углом, он вполне может отскочить в космос, подобно прыгающему по воде камешку.
237
Говорить о воспламенении не вполне корректно, поскольку химической реакции окисления с выделением тепла здесь нет, просто за счет трения о воздух конструкции корабля разогреваются, теряют прочность и могут даже испариться.
Но вам нет нужды рисковать, отправляясь на край атмосферы, чтобы лишний раз вспомнить о том, какими отчаянно цепляющимися за землю существами мы являемся. Как известно каждому пожившему в горном городке, ваш организм начинает протестовать при подъеме не так уж на много сотен метров над уровнем моря.
«Даже при самой благоприятной обстановке, — писал об условиях на вершине Эвереста альпинист Питер Хабелер [238] , — каждый шаг на этой высоте требует колоссального усилия воли. Ты должен заставлять себя делать любое движение, например что-нибудь взять. Постоянно одолевает свинцовая, смертельная усталость». В своей книге «Другая сторона Эвереста» английский альпинист и кинорежиссер Мэтт Дикинсон рассказывает, как Говард Сомервелл [239] во время экспедиции на Эверест в 1924 году «почувствовал, что задыхается насмерть из-за оторвавшегося и застрявшего в дыхательном горле кусочка собственной плоти». Огромным усилием Сомервеллу удалось откашлять закупоривший горло кусок. Оказалось, что это «просто фрагмент слизистой его собственной гортани».
238
8 мая 1978 года Рейнхольд Месснер и Питер Хабелер впервые в мире совершили восхождение на вершину Эвереста без использования кислородных аппаратов, что большинство специалистов считали совершенно невозможным.
239
Теодор Говард Сомервелл (Theodore Howard Somervell, 1890–1975) — известный английский альпинист, хирург по профессии. Дважды предпринимал попытки покорить Эверест — в 1922 и 1924 гг., однако оба раза неудачно.
Физические страдания особенно тяжелы начиная с высоты 7500 м — уровня, известного среди альпинистов как Зона Смерти, но многие тяжело переносят уже высоту более 4500 м и даже могут опасно заболеть. Такая чувствительность имеет мало отношения к тренированности. Порой бабули резво скачут по высоченным горкам, тогда как их крепкие отпрыски беспомощно стонут, лежа пластом, пока их не спустят пониже.
Считается, что абсолютный предел высоты, на которой еще возможно постоянное пребывание человека, — примерно 5500 м, но даже люди, прошедшие специальную высотную подготовку, могут не переносить подолгу такие высоты. В книге «Жизнь в экстремальных условиях» Фрэнсис Эшкрофт отмечает, что серные рудники в Андах находятся на высоте 5800 м, но горняки предпочитают каждый вечер спускаться на 460 м и на следующий день снова подниматься наверх, вместо того чтобы постоянно жить на той высоте. У коренных обитателей высокогорья за тысячелетия зачастую развиваются непропорционально большие грудная клетка и легкие и почти на треть возрастает концентрация переносящих кислород красных кровяных клеток, хотя существует предел их концентрации, ибо кровь может стать слишком густой, чтобы свободно течь по сосудам. Кроме того, на высоте больше 5500 м даже самые адаптированные женщины из-за нехватки кислорода не могут до конца выносить плод.
Когда в 1780-х годах в Европе начались экспериментальные подъемы на воздушных шарах, воздухоплавателей удивило, что с высотой становилось заметно холоднее. Казалось бы, логика подсказывает, что чем ближе к источнику тепла, тем должно быть теплее. Ответ частично состоит в том, что вы, по существу, не приближаетесь к Солнцу. Солнце находится в 150 млн км. Приблизиться к нему на несколько сотен метров — это все равно что, находясь в Огайо, сделать шаг в сторону лесного пожара в Австралии и ожидать, что почувствуешь запах дыма. Ответ снова возвращает нас к проблеме плотности молекул в атмосфере. Солнечные лучи возбуждают атомы. Те при столкновениях выделяют полученную энергию, что и приводит к повышению температуры. Когда в летний день вы чувствуете, как солнышко пригревает спину, на самом деле это дают о себе знать возбужденные атомы. Чем выше вы поднимаетесь, тем меньше остается молекул и тем реже между ними происходят столкновения. Воздух — обманчивая штука. Мы склонны думать, что даже на уровне моря он абсолютно бесплотный и почти невесомый. На самом деле он обладает внушительной массой, и эта масса часто себя проявляет. Океанограф Уайвилль Томсон [240] более века назад писал: «Просыпаясь утром, мы иногда узнаем, что показатель барометра поднялся на дюйм, что за ночь на нас потихоньку взвалили почти полтонны, однако не испытываем неудобства, а скорее встаем бодрыми и веселыми, потому что в более плотной среде организму требуется сравнительно меньше усилий для движения» [241] . Ваше тело не оказывается раздавленным лишней половиной тонны по той же причине, что и глубоко под водой: оно в основном состоит из несжимаемых жидкостей, которые давят обратно, уравнивая давление снаружи и изнутри.
240
Чарлз Уайвилль Томсон (Charles Wyville Thomson, 1830–1882) — профессор зоологии, научный руководитель экспедиции на корабле «Челленджер» (см. ниже).
241
Разумеется, это объяснение от легкости движения в более плотной среде не имеет никакого отношения к реальности.
Но приведите воздух в движение, будь то ураган или даже свежий ветер, и он скоро напомнит вам, что обладает значительной массой. Всего вокруг нас около 5200 млн тонн воздуха — по 10 млн тонн на каждый квадратный километр планеты — не такая уж незначительная величина. Когда миллионы тонн атмосферы устремляются со скоростью 50–60 км/ч, вряд ли кого удивит, что ломаются сучья и слетает с крыш черепица. Как отмечает Антони Смит [242] , типичный атмосферный фронт может состоять из 750 млн тонн холодного воздуха, прижатых миллиардом тонн более теплого. Стоит ли удивляться,
242
Антони Смит (Anthony Smith, p. 1926) — зоолог из Оксфордского университета, научный корреспондент газеты «Дейли телеграф», автор и ведущий познавательной программы «Завтрашний мир» на Би-би-си, автор научно-популярного бестселлера «Человеческое тело».
В мире у нас над головами, безусловно, не наблюдается недостатка энергии. Подсчитано, что одна гроза может заключать в себе количество энергии, эквивалентное количеству электроэнергии, потребляемому всеми Соединенными Штатами в течение четырех дней [243] . В подходящих условиях грозовые облака могут возвышаться на 10–15 км, скорость восходящих и нисходящих токов внутри них превышает 150 км/ч. Часто они расположены рядом, потому пилоты и не хотят летать сквозь них. В ходе этого внутреннего брожения находящиеся в облаке частицы заряжаются электричеством. По не совсем еще понятным причинам более легким частицам свойственно нести положительные заряды и подниматься воздушными потоками в верхние слои. Более тяжелые частицы удерживаются у основания, накапливая отрицательные заряды. Эти отрицательно заряженные частицы неудержимо тянет к положительно заряженной Земле, и остается лишь пожелать удачи всему тому, что окажется у них на пути. Молния летит со скоростью 4 млн км/ч [244] и может нагреть окружающий воздух до весьма бодрящей температуры в 25 тысяч градусов Цельсия, в несколько раз жарче, чем на поверхности Солнца. В любой момент на земном шаре происходит в среднем 1800 гроз — около 40 тыс в день. По всей планете днем и ночью каждую секунду в землю ударяет сотня молний. Небо — довольно оживленное место.
243
Речь идет об общей энергетике атмосферных процессов, а не об электрических разрядах, которые, несмотря на впечатляющие вспышки и гром, выделяют относительно немного энергии.
244
Не совсем ясно, что считать скоростью «полета» молнии. Лидер молнии, прокладывающий канал для протекания заряда, распространяется по воздуху со скоростью на порядок выше — около 12 тыс. км/с (более 40 млн км/ч). Однако лидер распространяется скачками по несколько десятков метров, которые разделены задержками порядка 0,02 секунды. В результате средняя скорость продвижения молнии оказывается намного ниже — около 200 км/с. Когда канал от облака до земли пробит, заряд по нему перетекает намного быстрее, со скоростями 10-100 тыс. км/с.
Значительная часть наших знаний о том, что происходит там, наверху, получена на удивление недавно. Струйные течения, обычно отмечаемые на высоте 9-11 тысяч метров, способны достигать скорости 300 км/ч и в огромной степени влиять на состояние погоды целых материков, а ведь об их существовании не подозревали, пока летчики не стали залетать в них во время Второй мировой войны. Даже теперь о многих атмосферных явлениях существует весьма приблизительное представление. Время от времени в полеты самолетов вносит оживление вид волнового движения, известного в обиходе как турбулентность при ясном небе. Два десятка таких происшествий в год — достаточно серьезное дело, чтобы о нем сообщить. Эти случаи не связаны ни со строением облаков и ни с чем-либо другим, что можно обнаружить визуально или с помощью радаров. Это просто зоны внезапной турбулентности среди безмятежно спокойного неба. В одном таком случае самолет, летевший в тихую погоду из Сингапура в Сидней над центральной Австралией, вдруг упал на 90 м — достаточно, чтобы не пристегнутых к креслам пассажиров подбросило к потолку. Пострадало двенадцать человек, один серьезно. Никто не знает, что служит причиной таких опасных для целостности корабля воздушных ям.
Процесс, в результате которого воздух перемещается в атмосфере, аналогичен тому, что движет внутренним механизмом планеты, это — конвекция. В экваториальных широтах влажный теплый воздух поднимается вверх, пока не встречает препятствие в виде тропопаузы и затем распространяется вширь. Удаляясь от экватора, он остывает и опускается вниз. Достигнув нижней точки, часть воздуха стремится к областям низкого давления и, завершая кругооборот, поворачивает к экватору.
На экваторе конвекционный процесс обычно стабилен и погода, как и следует ожидать, солнечная и ясная, но вот в умеренных поясах характер погоды в большей мере определяется сезоном, местонахождением и просто случайными факторами, что приводит к бесконечному противоборству воздушных систем высокого и низкого давления. Системы низкого давления создаются поднимающимся воздухом, который уносит в небо молекулы воды, образуя облака и в конечном счете вызывая дождь. Теплый воздух может содержать больше влаги, чем холодный, потому тропические и летние ливни бывают самыми обильными. Таким образом, областям низкого давления свойственна облачная, дождливая погода, а области высокого давления несут ясные солнечные дни. Когда же обе эти системы встречаются, это часто бывает заметно по облакам. Например, слоистые облака — те самые неприятные скучные, облегающие все небо, — возникают, когда насыщенным влагой восходящим воздушным потокам не хватает сил, чтобы пробиться сквозь находящийся выше слой более плотного воздуха, и они расползаются вширь, как дым по потолку. В самом деле, если вы как-нибудь понаблюдаете за курильщиком, проследите за поднимающейся кверху в неподвижном воздухе струйкой дыма, то хорошо представите, как это происходит. Сначала дым поднимается прямо вверх (это называется ламинарным течением, запомните это слово, если хотите произвести на кого-нибудь впечатление), а затем расстилается широким волнистым слоем. Самый мощный компьютер в мире, самым тщательным образом контролирующий окружающую среду, не сможет точно предсказать, какую форму примут эти завитки дыма, так что можете представить себе трудности, стоящие перед метеорологами, когда они пытаются предсказать такие движения в кружащемся, продуваемом ветром полномасштабном мире.
Что мы знаем наверняка, так это то, что, поскольку солнечное тепло распределяется неравномерно, на планете возникает разница в атмосферном давлении. Воздух не может этого терпеть и поэтому мечется из стороны в сторону, пытаясь всюду уравнять положение вещей. Ветер — это попросту способ, которым воздух пытается поддерживать равновесие. Воздух всегда перетекает из областей высокого давления в области низкого давления (как и следует ожидать; представьте что-либо наполненное воздухом — воздушный шар, или пневматический баллон, или самолет с выбитым иллюминатором — и вспомните, как настойчиво сжатый воздух стремится вырваться наружу), и чем больше разница в давлении, тем сильнее ветер.