Чтение онлайн

на главную - закладки

Жанры

Краткая история времени. От большого взрыва до черных дыр
Шрифт:

Модель Фридмана первого типа удивительна тем, что в ней Вселенная не бесконечна в пространстве, хотя пространство не имеет границ. Гравитация настолько сильна, что пространство, искривляясь, замыкается с самим собой, уподобляясь земной поверхности. Ведь, перемещаясь в определенном направлении по поверхности Земли, вы никогда не натолкнетесь на абсолютно непреодолимую преграду, не вывалитесь через край и в конце концов вернетесь в ту же самую точку, откуда вышли. В первой модели Фридмана пространство такое же, но только вместо двух измерений, поверхность Земли имеет три измерения. Четвертое измерение, время, тоже имеет конечную протяженность, но оно подобно отрезку прямой, имеющему начало и конец. Потом мы увидим, что если общую теорию относительности объединить с квантово-механическим принципом неопределенности, то окажется, что и пространство, и время могут быть конечными, не имея при этом ни краев, ни границ.

Мысль о том, что можно обойти вокруг Вселенной и вернуться в то же место, годится для научной фантастики, но не имеет практического значения, ибо, как можно показать, Вселенная успеет сжаться до нуля до окончания обхода. Чтобы вернуться в исходную точку до наступления конца Вселенной, пришлось бы передвигаться со скоростью, превышающей скорость

света, а это невозможно!

В первой модели Фридмана (в которой Вселенная расширяется и сжимается) пространство искривляется, замыкаясь само на себя, как поверхность Земли. Поэтому размеры его конечны. Во второй же модели, в которой Вселенная расширяется бесконечно, пространство искривлено иначе, как поверхность седла. Таким образом, во втором случае пространство бесконечно. Наконец, в третьей модели Фридмана (с критической скоростью расширения) пространство плоское (и, следовательно, тоже бесконечное).

Но какая же из моделей Фридмана годится для нашей Вселенной? Перестанет ли Вселенная наконец расширяться и начнет сжиматься или же будет расширяться вечно? Чтобы ответить на этот вопрос, нужно знать нынешнюю скорость расширения Вселенной и ее среднюю плотность. Если плотность меньше некоторого критического значения, зависящего от скорости расширения, то гравитационное притяжение будет слишком мало, чтобы остановить расширение. Если же плотность больше критической, то в какой-то момент в будущем из-за гравитации расширение Вселенной прекратится и начнется сжатие.

Сегодняшнюю скорость расширения Вселенной можно определить, измеряя (по эффекту Доплера) скорости удаления от нас других галактик. Такие измерения можно выполнить очень точно. Но расстояния до других галактик нам плохо известны, потому что их нельзя измерить непосредственно. Мы знаем лишь, что Вселенная расширяется за каждую тысячу миллионов лет на 5-10%. Однако неопределенность в современном значении средней плотности Вселенной еще больше. Если сложить массы всех наблюдаемых звезд в нашей и других галактиках, то даже при самой низкой оценке скорости расширения сумма окажется меньше одной сотой той плотности, которая необходима для того, чтобы расширение Вселенной прекратилось. Однако и в нашей, и в других галактиках должно быть много темной материи, которую нельзя видеть непосредственно, но о существовании которой мы узнаем по тому, как ее гравитационное притяжение влияет на орбиты звезд в галактиках. Кроме того, галактики в основном наблюдаются в виде скоплений, и мы можем аналогичным образом сделать вывод о наличии еще большего количества межгалактической темной материи внутри этих скоплений, влияющего на движение галактик. Сложив массу всей темной материи, мы получим лишь одну десятую того количества, которое необходимо для прекращения расширения. Но нельзя исключить возможность существования и какой-то другой формы материи, распределенной равномерно по всей Вселенной и еще не зарегистрированной, которая могла бы довести среднюю плотность Вселенной до критического значения, необходимого, чтобы остановить расширение. Таким образом, имеющиеся данные говорят о том, что Вселенная, вероятно, будет расширяться вечно. Единственное, в чем можно быть совершенно уверенным, так это в том, что если сжатие Вселенной все-таки произойдет, то никак не раньше, чем через десять тысяч миллионов лет, ибо по крайней мере столько времени она уже расширяется. Но это не должно нас слишком сильно тревожить: к тому времени, если мы не переселимся за пределы Солнечной системы, человечества давно уже не будет – оно угаснет вместе с Солнцем!

Все варианты модели Фридмана имеют то общее, что в какой-то момент времени в прошлом (десять-двадцать тысяч миллионов лет назад) расстояние между соседними галактиками должно было равняться нулю. В этот момент, который называется большим взрывом, плотность Вселенной и кривизна пространства-времени должны были быть бесконечными.

Поскольку математики реально не умеют обращаться с бесконечно большими величинами, это означает, что, согласно общей теории относительности (на которой основаны решения Фридмана), во Вселенной должна быть точка, в которой сама эта теория неприменима. Такая точка в математике называется особой (сингулярной). Все наши научные теории основаны на предположении, что пространство-время гладкое и почти плоское, а потому все эти теории неверны в сингулярной точке большого взрыва, в которой кривизна пространства-времени бесконечна. Следовательно, даже если бы перед большим взрывом происходили какие-нибудь события, по ним нельзя было бы спрогнозировать будущее, так как в точке большого взрыва возможности предсказания свелись бы к нулю. Точно так же, зная только то, что произошло после большого взрыва (а мы знаем только это), мы не сможем узнать, что происходило до него. События, которые произошли до большого взрыва, не могут иметь никаких последствий, касающихся нас, и поэтому не должны фигурировать в научной модели Вселенной. Следовательно, нужно исключить их из модели и считать началом отсчета времени момент большого взрыва.

Мысль о том, что у времени было начало, многим не нравится, возможно, тем, что в ней есть намек на вмешательство божественных сил. (В то же время за модель большого взрыва ухватилась Католическая Церковь и в 1951 г. официально провозгласила, что модель большого взрыва согласуется с Библией). В связи с этим известно несколько попыток обойтись без большого взрыва. Наибольшую поддержку получила модель стационарной Вселенной. Ее авторами в 1948 г. были X. Бонди и Т. Гоулд, бежавшие из оккупированной нацистами Австрии, и англичанин Ф. Хойл, который во время войны работал с ними над проблемой радиолокации. Их идея состояла в том, что по мере разбегания галактик на освободившихся местах из нового непрерывно рождающегося вещества все время образуются новые галактики. Следовательно, Вселенная должна выглядеть примерно одинаково во все моменты времени и во всех точках пространства. Конечно, для непрерывного «творения» вещества требовалась некоторая модификация теории относительности, но нужная скорость творения оказывалась столь малой (одна частица на кубический километр в год), что не возникало никаких противоречий с экспериментом. Стационарная модель – это пример хорошей научной теории в смысле критериев главы 1: она простая и дает определенные предсказания, которые можно проверять путем наблюдений. Одно из ее предсказаний таково: должно быть постоянным число галактик и других аналогичных объектов в любом заданном объеме пространства независимо от того, когда и где во Вселенной производятся наблюдения. В конце 50-х-начале 60-х годов астрономы из Кембриджского университета под руководством М. Райла (который во время войны вместе с Бонди, Гоулдом и Хойлом тоже занимался разработкой радиолокации) составили каталог источников радиоволн, приходящих из внешнего пространства. Эта кембриджская группа показала, что большая часть этих радиоисточников должна находиться вне нашей Галактики (многие источники можно было отождествить даже с другими галактиками) и, кроме того, что слабых источников гораздо больше, чем сильных. Слабые источники интерпретировались как более удаленные, а сильные – как те, что находятся ближе. Далее, оказалось, что число обычных источников в единице объема в удаленных областях больше, чем вблизи. Это могло означать, что мы находимся в центре огромной области Вселенной, в которой меньше источников, чем в других местах. Но, возможно, было и другое объяснение: в прошлом, когда радиоволны начали свой путь к нам, источников было больше, чем сейчас. Оба эти объяснения противоречат предсказаниям теории стационарной Вселенной. Кроме того, микроволновое излучение, обнаруженное в 1965 г. Пензиасом и Вильсоном, тоже указывало на большую плотность Вселенной в прошлом, и поэтому от модели стационарной Вселенной пришлось отказаться.

В 1963 г. два советских физика, Е. М. Лифшиц и И. М. Халатников, сделали еще одну попытку исключить большой взрыв, а с ним и начало времени. Лифшиц и Халатников высказали предположение, что большой взрыв – особенность лишь моделей Фридмана, которые в конце концов дают лишь приближенное описание реальной Вселенной. Не исключено, что из всех моделей, в какой-то мере описывающих существующую Вселенную, сингулярность в точке большого взрыва возникает только в моделях Фридмана. Согласно Фридману, все галактики удаляются в прямом направлении друг от друга, и поэтому все они находились в одном месте. Однако в реально существующей Вселенной галактики никогда не расходятся точно по прямой: обычно у них есть еще и небольшие составляющие скорости, направленные под углом. Поэтому на самом деле галактикам не нужно находиться точно в одном месте – достаточно, чтобы они были расположены очень близко друг к другу. Тогда нынешняя расширяющаяся Вселенная могла возникнуть не в сингулярной точке большого взрыва, а на какой-нибудь более ранней фазе сжатия; может быть, при сжатии Вселенной столкнулись друг с другом не все частицы. Какая-то доля их могла пролететь мимо друг друга и снова разойтись в разные стороны, в результате чего и происходит наблюдаемое сейчас расширение Вселенной. Как тогда определить, был ли началом Вселенной большой взрыв? Лифшиц и Халатников занялись изучением моделей, которые в общих чертах были бы похожи на модели Фридмана, но отличались от фридмановских тем, что в них учитывались нерегулярности и случайный характер реальных скоростей галактик во Вселенной. В результате Лифшиц и Халатников показали, что в таких моделях большой взрыв мог быть началом Вселенной даже в том случае, если галактики не всегда разбегаются по прямой, по это могло выполняться лишь для очень ограниченного круга моделей, в которых движение галактик происходит определенным образом. Поскольку же моделей фридмановского типа, не содержащих большой взрыв, бесконечно больше, чем тех, которые содержат такую сингулярность, Лифшиц и Халатников утверждали, что на самом деле большого взрыва не было. Однако позднее они нашли гораздо более общий класс моделей фридмановского типа, которые содержат сингулярности и в которых вовсе не требуется, чтобы галактики двигались каким-то особым образом. Поэтому в 1970 г. Лифшиц и Халатников отказались от своей теории.

Тем не менее их работа имела очень важное значение, ибо показала, что если верна общая теория относительности, то Вселенная могла иметь особую точку, большой взрыв. Но эта работа не давала ответа на главный вопрос: следует ли из общей теории относительности, что у Вселенной должно было быть начало времени – большой взрыв? Ответ на этот вопрос был получен при совершенно другом подходе, предложенном в 1965 г. английским математиком и физиком Роджером Пенроузом. Исходя из поведения световых конусов в общей теории относительности и того, что гравитационные силы всегда являются силами притяжения, Пенроуз показал, что когда звезда сжимается под действием собственных сил гравитации, она ограничивается областью, поверхность которой в конце концов сжимается до нуля. А раз поверхность этой области сжимается до нуля, то же самое должно происходить и с ее объемом. Все вещество звезды будет сжато в нулевом объеме, так что ее плотность и кривизна пространства-времени станут бесконечными. Иными словами, возникнет сингулярность в некоей области пространства-времени, называемая черной дырой.

На первый взгляд, эта теорема Пенроуза относится только к звездам: в ней ничего не говорится о том, испытала ли вся Вселенная в прошлом большой взрыв. В то время, когда Пепроуз доказал свою теорему, я, будучи аспирантом, отчаянно искал какую-нибудь задачу, чтобы защитить диссертацию. За два года до этого врачи поставили мне диагноз «боковой амиотрофическнй склероз», или моторная болезнь нейронов, и дали понять, что я протяну не больше одного-двух лет. При таких обстоятельствах не было особого смысла работать над диссертацией, ибо я не надеялся дожить до ее завершения. Но прошло два года, а хуже мне не стало. Мои дела шли прекрасно, и я был помолвлен с очаровательной девушкой по имени Джейн Уайлд. Для женитьбы мне требовалась работа, а чтобы ее получить, нужна была докторская степень.

В 1965 г. я прочитал о теореме Пенроуза, согласно которой любое тело в процессе гравитационного коллапса должно в конце концов сжаться в сингулярную точку. Вскоре я понял, что если в теореме Пенроуза изменить направление времени на обратное, так, чтобы сжатие перешло в расширение, то эта теорема тоже будет верна, коль скоро Вселенная сейчас хотя бы грубо приближенно описывается в крупном масштабе моделью Фридмана. По теореме Пенроуза конечным состоянием любой коллапсируюшей звезды должна быть сингулярность; при обращении времени эта теорема утверждает, что в любой модели фридмановского типа начальным состоянием расширяющейся Вселенной тоже должна быть сингулярность. По соображениям технического характера в теорему Пенроуза было введено в качестве условия требование, чтобы Вселенная была бесконечна в пространстве. Поэтому на основании этой теоремы я мог доказать лишь, что сингулярность должна существовать, если расширение Вселенной происходит достаточно быстро, чтобы не началось повторное сжатие (ибо только такие фридмановские модели бесконечны в пространстве).

Поделиться:
Популярные книги

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV

LIVE-RPG. Эволюция 2

Кронос Александр
2. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.29
рейтинг книги
LIVE-RPG. Эволюция 2

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Безымянный раб [Другая редакция]

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
боевая фантастика
9.41
рейтинг книги
Безымянный раб [Другая редакция]

Светлая ведьма для Темного ректора

Дари Адриана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Светлая ведьма для Темного ректора

ТОП сериал 1978

Арх Максим
12. Регрессор в СССР
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
ТОП сериал 1978

Сердце дракона. Том 18. Часть 2

Клеванский Кирилл Сергеевич
18. Сердце дракона
Фантастика:
героическая фантастика
боевая фантастика
6.40
рейтинг книги
Сердце дракона. Том 18. Часть 2

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Двойной запрет для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Двойной запрет для миллиардера

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2