Кристаллы
Шрифт:
Слегка ударьте чем-либо хрустальную вазу, вы услышите мелодичный звон. Как известно, звук – это колебания воздуха, вызываемые быстрым невидимым дрожанием предметов, излучающих звук. Хрустальная ваза после того, как мы её ударили, начала колебаться с собственной частотой.
Пластинка кварца тоже начнёт колебаться – удлиняться и укорачиваться – с собственной частотой, если её ударить. Можно рассчитать, что пластинка толщиной в 1 см будет совершать около 300 000 колебаний в секунду. Наше ухо способно воспринимать звук лишь с частотой примерно от 16 до 20 000 колебаний в секунду. Следовательно, пьезокварц излучает «неслышимые звуки» или, как говорят, ультразвуки [6] .
6
Об
Однако простым щелчком мы заставим пластинку пьезокварца колебаться лишь на мгновенье. Замечательное свойство пьезокварца превращать механическую энергию в электрическую, и обратно, позволяет довольно легко создать незатухающие колебания кварцевой пластинки. На опытах установлено, что при подключении пьезокварца к источнику электрического напряжения пластинка слегка удлиняется или сжимается в направлении А – в зависимости от расположения полюсов источника.
При включении пьезокварцевой пластинки в цепь переменного тока она то расширяется, то укорачивается, то есть приходит в состояние колебаний с частотой тока. Если ток меняет своё направление 10 000 раз в секунду, то и пластинка будет колебаться с той же частотой. Но эти колебания малы, так как происходят не с собственной частотой пластинки, не «в резонанс».
Как получше раскачать качели? Разумеется, толкать их в такт собственным колебаниям. Поступим так же и с пьезокварцем.
Подберём частоту переменного тока так, чтобы она была равна собственной частоте пластинки, иначе говоря, чтобы электрический ток действовал в резонансе с собственными колебаниями пьезокварца. Пластинка придёт при этом в сильные колебания, энергично излучая ультразвуковые волны.
Источник ультразвуковых волн – пьезокварц – нашёл широкое применение в разных областях техники. Исключительное значение имеют эти волны для подводной сигнализации. Они много удобнее обычных звуковых волн, так как распространяются более направленно. Кроме того, ультразвуковой сигнал нельзя «подслушать» ухом.
Как и всякие волны, ультразвук отражается от препятствий. При помощи ультразвука можно измерять глубину моря и вообще определять отдалённость какого-либо препятствия. Для этого надо лишь знать скорость распространения ультразвука и определить время, через которое вернётся обратно сигнал, посланный в сторону препятствия. Трудно переоценить роль скромного маленького кристалла кварца в решении всех этих задач. Пьезокварц, установленный на корабле, непрерывно излучает ультразвук. Если только на пути корабля имеется невидимое подводное препятствие (скала, айсберг), ультразвуковая волна отразится и, вернувшись обратно, «сообщит» о необходимости перемены курса.
Ультразвуковые волны хотя и отражаются от твёрдых тел, но частично также проникают в них. Поэтому ультразвуками можно просвечивать тела и обнаруживать внутренние невидимые пороки. Такой способ был разработан и с успехом применён советским учёным проф. С.Я. Соколовым. Очень важно также применение пьезокварца в радиотехнике, где он помогает сделать более устойчивой (стабилизировать) работу передатчиков.
Из кристаллов, обладающих пьезоэлектрическими свойствами, особо широкое применение имеет именно кварц. Это объясняется механической и химической стойкостью, а также довольно широкой распространённостью кварца. В Физическом институте и Кристаллографическом институте Академии наук под руководством лауреатов Сталинской премии чл.-корр. Академии наук СССР Б.М. Вул и А.В. Шубникова ведутся работы по получению и поискам других кристаллов с замечательными пьезоэлектрическими свойствами. Советскими физиками достигнуты в этой области блестящие успехи, высоко оценённые правительством.
14. Как растут кристаллы
Водяной пар, вода и лёд – это одно и то же вещество, молекулы которого состоят из 2-х атомов водорода и одного атома кислорода. Можно сказать про лёд, что это – твёрдая вода, или про воду, что это – жидкий лёд. Одно и то же вещество существует в трёх состояниях – газообразном, жидком и твёрдом. Вообще говоря, все вещества могут быть с большим или меньшим трудом получены во всех трёх состояних. Сталь и железо плавятся на металлургических заводах, жидкий воздух изготовляется для разных технических целей и развозится по городу в специальных теплоизолированных сосудах, твёрдый углекислый газ – это хорошо знакомый нам «сухой лёд»…
Почти любое вещество может при известных условиях дать кристаллы. Кристаллы можно получить из раствора или из расплава данного вещества, а также из его паров (например, чёрные ромбовидные кристаллы иода легко выпадают из его паров при нормальном давлении без промежуточного перехода в жидкое состояние).
Начните растворять в воде столовую соль или сахар. Не любое количество удастся растворить. При комнатной температуре (20°) вы сумеете растворить в гранёном стакане 70 граммов соли. Дальнейшие добавки соли растворяться не будут и улягутся на дне в виде осадка. Раствор, в котором дальнейшее растворение уже не идёт, называется насыщенным. Если изменить температуру, то изменится и степень растворимости вещества. Всем хорошо известно, что большинство веществ горячая вода растворяет значительно легче, чем холодная.
Представьте себе теперь, что вы приготовили насыщенный раствор, скажем, сахара при температуре 30° и начинаете охлаждать его до 20°. При 30° вы сможете растворить в 100 граммах воды 223 грамма сахара, при 20° растворяется 205 граммов. Тогда при охлаждении от 30 до 20° 18 граммов окажутся «лишними» и, как говорят, выпадут из раствора. Итак, один из возможных способов получения кристаллов состоит в охлаждении насыщенного раствора.
Можно поступить и иначе. Приготовьте насыщенный раствор соли и оставьте его в открытом стакане. Через некоторое время вы обнаружите появление кристалликов. Почему же они образовались? Внимательное наблюдение покажет, что одновременно с образованием кристаллов произошло ещё одно изменение – количество воды убыло. Вода испарилась, и в растворе оказалось «лишнее» вещество. Итак, другой возможный способ образования кристаллов – это испарение раствора.
Как же происходит образование кристаллов из раствора?
Мы сказали, что кристаллы «выпадают» из раствора; надо ли это понимать так, что неделю кристалла не было, а в одно какое-то мгновение он вдруг сразу возник? Нет, дело обстоит не так: кристаллы растут.
Не удаётся, разумеется, обнаружить глазом самые начальные моменты роста. Сначала немногие из беспорядочно движущихся молекул или атомов растворённого вещества собираются в том примерно порядке, который нужен для образования кристаллической решётки. Такую группу атомов или молекул называют зародышем.
Опыт показывает, что зародыши охотнее образуются при наличии в растворе каких-либо посторонних мельчайших пылинок. Всего быстрее и легче кристаллизация начинается тогда, когда в насыщенный раствор помещается маленький кристалл-затравка. При этом выделение из раствора твёрдого вещества будет заключаться не в образовании новых кристалликов, а в росте затравки.
Рост зародыша не отличается, конечно, от роста затравки. Смысл использования затравки состоит в том, что она «оттягивает» на себя выделяющееся вещество и препятствует, таким образом, одновременному образованию большого числа зародышей. Если же зародышей образуется сразу много, то они будут мешать друг другу при росте и не позволят нам получить крупных кристаллов.